2012

PARLIAMENT OF TASMANIA

LEGISLATIVE COUNCIL
GOVERNMENT ADMINISTRATION COMMITTEE ‘A’

REPORT OF THE TASMANIAN FORESTS
INTERGOVERNMENTAL AGREEMENT
INDEPENDENT VERIFICATION GROUP
‘REPORT OF THE CHAIRMAN’

Members of the Committee:
Hon Ruth Forrest (Committee Chair) MLC
Hon Jim Wilkinson (Inquiry Chair) MLC
Hon Rosemary Armitage MLC
Hon Vanessa Goodwin MLC
Hon Paul Harriss MLC
Hon Rob Valentine MLC
Contents
CHAIRMAN’S FOREWORD ..3
INTRODUCTION ..5
 The Limitations of the IVG Terms of Reference .. 9
 The Context of Professor West’s Comments .. 11
 The Complaints to the PEFC ... 14
FINDINGS ... 18
APPENDIX B - Professor Ian Ferguson - Forestry Tasmania’s Sustainable Yield Under the Australian Forestry Standard..
CHAIRMAN’S FOREWORD

Prior to the commencement of this inquiry, I had followed the work of the Independent Verification Group (IVG), as part of the Tasmanian Forests Intergovernmental Agreement with interest.

Following the release of the various IVG reports in early 2012, I was concerned by events that followed the publication of the Chairman’s Report by Professor Jonathan West in April 2012.

I had noted that the Chairman’s report had not previously been released as part of the IVG reports, and that following its release by Professor West, it had been used by parties seeking to criticise the Tasmanian forest industry. This had included the use of the report as part of an ongoing negative campaign in overseas markets for Tasmania’s wood products. The report had also been used within Tasmania, for the purpose of adversely criticising Forestry Tasmania and its forestry practices.

It was my belief from an initial reading of the Chairman’s report, that it appeared to have been misinterpreted or misrepresented by the organisations and individuals concerned. I had noted that the Tasmanian Government had moved to quickly distance itself from the report being formally associated with the IVG reporting process, but had failed to adequately clarify Professor West’s report with him on the public record.

As a Member of the Legislative Council, the most appropriate and timely mechanism to clarify information in relation to a matter of public importance, was to initiate a short Parliamentary Inquiry. I believed that in this case, it would provide an opportunity to discuss the Chairman’s Report at public hearings with the relevant parties including Professor West. It would also enable the publication of a report of the Committee that would include the evidence received.

I am grateful to Members of the Legislative Council Government Administration Committee ‘A’ for supporting my motion to establish this inquiry and believe the evidence obtained by the Committee will contribute to correcting the public record.

As Chairman of the Inquiry, it was my observation that Professor West himself was pleased to be able to formally clarify his position on the public record as part of the inquiry process. I noted the apparent frustration expressed by Professor West during the course of his evidence in relation to the misrepresentation and misuse of certain information contained in his report and that he believed the misuse of the report had been counterproductive.

The Committee has made a number of findings that are outlined in this report. Any objective assessment of the evidence received by the Committee will readily draw a number of conclusions, some of which I believe are worthy of noting as part of this foreword:
• The public statements made by some organisations in relation to Forestry Tasmania’s harvesting practices misrepresented Professor West’s views and were in error;
• Professor West was not critical of Forestry Tasmania in his report;
• Forestry Tasmania has acted in accordance with its certification standards, as confirmed by recent independent auditing by JAS-ANZ accredited certifying body NCSI;
• Professor West did not consider the full forest estate in forming his views; and
• The subsequent complaints made to the independent certification body in relation to Forestry Tasmania’s harvesting practices were dismissed as unsubstantiated after an independent assessment by an eminent sustainability expert was completed.

I note that it is often challenging to persuade individuals or organisations that have strongly advocated a particular position, to reconsider certain public statements that they have previously made when faced with compelling evidence to do so. I trust that in this case however, those organisations and individuals that have relied upon Professor West’s report to make publicly critical comments about Forestry Tasmania and the Tasmanian forest industry will reconsider their previous statements and correct the public record accordingly.

Hon Jim Wilkinson MLC
Inquiry Chair
INTRODUCTION

1. Government Administration Committee “A” (the Committee) was established by resolution of the Legislative Council and its operation is governed by Sessional Orders agreed to by the Council.

2. By resolution of 1 May 2012, the Committee resolved to establish an inquiry with the following terms of reference.

 To inquire into and report upon key finding 1 of the ‘Report of the Chairman’ Mr Jonathan West, as part of the work of the Tasmanian Forests Intergovernmental Agreement Independent Verification Group, which found ‘Tasmania’s native forest (not including plantations) have been and continue to be harvested substantially above long-term sustainable yield, in respect of the key product segments to which they provide resources’.

3. The Independent Verification Group (IVG), chaired by Professor Jonathan West (the Chairman), was established in accordance with Clause 20 of the Tasmanian Forests Intergovernmental Agreement (TFIA).

4. According to the ‘Final Report on the work of the Independent Verification Group for the Tasmanian Forests Intergovernmental Agreement’ (the Capstone Report), ‘the IVG spent approximately 5 months verifying the claims about conservation values and wood supply’.

5. The Capstone Report was a summary report that accompanied the overall work tasks completed by the IVG under its terms of reference which had included a number of technical reports that covered issues such as wood supply, forest conservation, mineral and socio-economic factors associated with the TFIA.

6. After the public release of the IVG reports by the Commonwealth and State Governments, a further report known as the ‘Report of the Chairman’ was released publicly. The report was authored by Professor West. (Appendix A).

7. Of significance, the Chairman’s report did not form part of the formal documents of the IVG that were released by the State and Commonwealth
Governments. Instead, the report was released separately in April 2012 by Professor West following a variety of requests for the document to be made public.

8. The official documentation released as part of the IVG process by the Governments can be found at the Department of Sustainability, Environment, Water, Population and Communities website:

9. The Premier was questioned on the status and release of the Chairman’s report in the House of Assembly on 27 March 2012.

The Jonathan West report that people are talking about comprises the notes he prepared of his views of this process, prepared in order to brief relevant people, including Cabinet. He used those notes yesterday in Cabinet to brief Cabinet Ministers. I understand that Jonathan West is comfortable with releasing the information publicly. I understand he will be releasing that information publicly, if he has not done it already.

It is not part of the work that was commissioned by the Government. It is his personal views, as I understand it, about the process. They are his views, which are contestable, just as the other points of every report we have released as part of the commissioned work of government are also contestable. Substantial elements, such as the wood supply report, have been peer reviewed already. Some of them still need to be peer reviewed. There will be elements of every report that are contestable, as there are parts of this Jonathan West briefing paper that represent contestable points of view. It is his report – his briefing notes – that he prepared for himself. It has nothing to do with the independent verification process, but in the interest of transparency, which I think is fundamental in this – there is nothing secret about it – I am very comfortable and very happy that Mr West has chosen to release it publicly.¹

¹ Hansard transcript, House of Assembly, 27 March 2012, p.4
10. With this background in mind, the purpose of the inquiry has not been to consider the broad work of the IVG.

11. The inquiry was initiated for the purpose of obtaining further information in relation to the Chairman’s report and, in particular, ‘key finding 1’ (the finding).

12. Upon initial assessment, the Committee was concerned that the report included an adverse finding in relation to the sustainable yields associated with the harvesting practices of Forestry Tasmania and in general terms, was critical of them.

13. Of particular concern in the finding were the following comments:
 - Forestry Tasmania had been committed to harvesting sawlogs from native forest (not including plantations) at about double sustainable yield;
 - Forestry Tasmania has also been harvesting peeler billets from native forest (again, not including plantations) at about double sustainable yield.²

14. The finding went on to provide further commentary in relation to the existing plantation resource.

 Some hope that Forestry Tasmania’s plantations will make up this resource in future. Unfortunately, the amount of sawlogs and peeler billets that might be gained in future from Forestry Tasmania’s plantations is highly uncertain, and it appears unlikely that a large supply of high-quality sawlogs and peeler billets will be able to be sourced from Forestry Tasmania’s plantations in the next 20 years at least. It is particularly unlikely that these plantations will prove suitable to supply the sawmilling and veneer industries as they exist with current technology in Tasmania.³

15. The Committee was unclear as to the basis of the finding in the context of the forest certification standards (Australian Forestry Standard) that Forestry Tasmania’s harvesting practices had been certified under.

³ Ibid
16. This was made further unclear by the fact that it appeared to have been based upon consideration of only part of the forest resource relied upon by Forestry Tasmania in calculating the sustainable yield.

17. Following the release of the Chairman’s report, the Committee was concerned that his finding may have been misinterpreted or misrepresented publicly by organisations and individuals seeking to criticise the work of Forestry Tasmania and in particular, the forest practice and certification standards in Tasmania.

18. The Committee had noted a range of adverse public commentary, such as criticisms made by Mr Kim Booth MHA via a media release on 5 April 2012, following the release of the report.

 The more light shone on the murkiness of FT, the better, in my opinion....I’d settle for Professor West’s findings over FT’s desperate spin any day.

19. The Committee had also noted the response to the Chairman’s report by international activist organisations such as Markets for Change. The Examiner Newspaper reported the reaction from Markets for Change to the report on 7 April 2012.

 Markets for Change spokeswoman Peg Putt said the group had written to Ta Ann customers about their offer and Professor West’s report, which said that Forestry Tasmania had been overcutting native forests.

20. The Committee was particularly concerned about the impact of such comments on the already fragile Tasmanian forest industry, both on a domestic and international basis, given the already significant market and other pressures the industry had been experiencing.

21. The Committee was also concerned that as a result of the Chairman’s finding, complaints had been raised by third parties with the independent forest certification body ‘Program for the Endorsement of Forest Certification’

4 The Greens Tasmania Media Release, 5 April 2012
5 Examiner Newspaper, 7 April 2012
(PEFC), which resulted in an investigation led by Professor Emeritus of Forest Science at the University of Melbourne Ian Ferguson OAM.

22. In light of these concerns, the Committee sought to undertake a short inquiry for the purpose of clarifying some basic facts in relation to the Chairman’s report that could be placed on the public record.

23. The Committee did not call for public submissions, however, (1) submission was received from the Australian Forest Products Association on 10 May 2012.

24. The IVG Chairman, Professor Jonathan West (the Chairman) gave evidence at a public hearing on 15 May 2012. Forestry Tasmania and the Forest Practices Authority also gave evidence at a public hearing on 27 July 2012. The Committee wishes to thank the witnesses for their time and assistance in relation to this inquiry.

The Limitations of the IVG Terms of Reference

25. Professor West was questioned at a public hearing about his understanding of the task of the IVG in relation to the sustainable yield. He said of the task:

 Our terms of reference were to inquire into the sustainable yield of the publicly-owned native forest estate, not the forest estate as a whole and not even – a large part of which of course is private – and not even all the forest managed by Forestry Tasmania.

26. Professor West further discussed the limitations of his terms of reference in explaining the reason for not considering the plantation estate in Tasmania.

 The question is when you take into account plantation resources that will become available in coming years – in about 20 years time – would they be sufficient to mean that the forest estate managed by Forestry Tasmania as a whole is being sustainably managed. That is not a question that my group investigated. My comment is about the publicly available native forest and then about the risk….it is very clear that the focus is on the risk

6 Professor Jonathan West, Hansard Transcript, Legislative Council, 15 May 2012, p1
that the plantations will not prove suitable to supply the existing industry that we have.\footnote{Op.Cit. p.2}

27. Mr John Hickey from Forestry Tasmania expressed his concerns in relation to the position taken by the Chairman in not considering the plantation resource and noted that, in his opinion, plantation resources had been considered by other members of the IVG.

\textit{Dr Goodwin – I am still a little bit puzzled by why Professor West didn’t look at plantations, despite the fact that we have had the opportunity to talk to Professor West. I am just wondering if perhaps you know why he didn’t factor in plantations in his particular report. Do you have a clearer picture of what happened there?}

\textit{Mr Hickey – No. Professor Burgman’s wood modelling included the plantations. Professor West didn’t seem to see it as part of his own brief.\footnote{Op.Cit. p.16}}

28. This position was supported by the Australian Forest Products Association in their written submission to the inquiry.

\textit{“Under the RFA and TCFA outcomes, FT was required to adopt a strategy of sustained yield that relied on both native forests and plantations. Contracted peeler and sawlog harvests cannot be sustained from native forest alone. The RFA and TCFA agreements were designed to be sustained from both native forests and plantations.”} (Burgman and Robinson, 2012)\footnote{Australian Forest Products Association Inquiry Submission, p.3}

29. The Committee noted from his evidence that Professor West had focused on those areas of public native forest specifically identified under the Tasmanian Forest Agreement – Forest Reserve Map.

30. The Committee was aware that it was the mapping formulated under the Tasmanian Forest Agreement that had led to the establishment of the IVG and that this had excluded private forest and plantation resources. Whether this
was an error on the part of the Tasmanian and Commonwealth Governments in setting the scope of the task of the IVG, or the interpretation made by the IVG to its terms of reference, is unclear.

31. During the course of his evidence Professor West did appear to question the terms of his appointment and noted what he believed a more appropriate approach to the task of identifying additional reserve systems in Tasmania should have been.

The right way to proceed would have been to get an agreed body of fact and then to start arguing about what you are going to do about it... To agree what the questions are, hire some people to research those questions, get a body of fact, have your argument about whether it’s true or not and get some broad agreement on what the factual basis is. We reached an agreement without agreement on what the values were, where they were, how much timber (sic) industry is using, how much timber can the forest provide and we’re trying to backfill, which makes it hard.

The Context of Professor West’s Comments

32. Professor West was questioned at the hearing about the context of his comments concerning sustainable yield in consideration of his evidence of the limited scope of the task of the IVG.

I make it very clear that I am excluding the plantation estate from that assessment, other than to look at the risk for the industry that the product types required by the industry that we actually have will not be able to be supplied. The problem there is we don’t know the answer yet. The point I make in my report is that by the time we find out the answer of whether those plantations will be able to provide the product types that our industry needs, it may be too late to go back if we continue on the path we are on.

And that

10 *Op.Cit.* p.17
11 *Op.Cit.* p.2
I believe that I have been taken out of context because the comments I make relate to only one part of the forest estate and not to the forest estate as a whole…

33. This position was supported by the Chairman of the Tasmanian Forest Practices Authority, Professor Gordon Duff, who stated in evidence that:

I read the comment as part of the executive summary to the report of the chairman from the IVG and my interpretation of that was that it was taken out of context and also taken in isolation from the planning that was in place to gradually utilise more and more of the plantation part of the resource. It was focused on its current wood supply targets, but in isolation from the resource that would be coming on-stream further down the track. As you read through some of the detail in the IVG report, that becomes apparent. I could see, for example, that the comment could be taken out of context and would cause concern, but I was reasonably confident that it could be resolved once people had taken onboard the existing information.

34. Professor Duff’s views were also supported by the Chief Forest Practices Officer from the Forest Practices Authority, Mr Graham Wilkinson, who stated

Yes, that was my analysis of all of the work that has been done on sustained yield over many years, is that there has always been a component given to regrowth and to plantation wood, and to scheduling the flow from native forest, both from old-growth and regrowth so that it could be evened out over time in anticipation of the new resource that would be replacing old-growth over time. My understanding of Professor West’s comments were that they were made with that in mind and they were a subset of the overall calculation of sustained yield.

35. Mr Bob Gordon from Forestry Tasmania spoke about the reaction of Forestry Tasmania staff to the negative public comments arising from the Chairman’s finding.

12 Op.Cit. p.4
13 Op.Cit. p.28
14 Ibid
I don’t believe that any of the people who are working for Forestry Tasmania, particularly those who have professional expertise in sustainable management, had any doubt that Professor West’s comments were not correct. People didn’t say ‘Oh, what have we done?’ They said, ‘What do we need to do to correct the public record so that these comments can’t be misused by others’. If we hadn’t gone through the process with the independent certifiers and their engagement of independent experts, then I believe we would have done a similar thing ourselves on our own initiative’.

36. Professor West said of the opinions expressed in his report in the context of Forestry Tasmania’s conduct:

I am not critical of Forestry Tasmania. If anything I am critical of the obligations that have been imposed upon Forestry Tasmania and continue to be. They have contracts to provide 265 000 cubic metres of peeler billets well into the late 2020’s. They have legislation that requires them to provide 300 000 cubic metres of high-quality saw logs and they are doing their best job to provide that

And that

This is not critical of Forestry Tasmania, not critical of the professionalism of the people who work there. What I am trying to do is offer one possible path to building an industry that is broadly accepted and that can say to the public, ‘We are sustainable both in terms of our management of the forest and in terms of the environment’ and say that with absolute truth and conviction and thereby, win public support. It’s really trying to set the parameters if we are going forward to building that sort of an industry that is important for Tasmania. It’s not an attempt to be critical of Forestry Tasmania.

16 Op.Cit. p.21
17 Ibid
37. The Australian Forest Products Association was critical in its written submission of the decision of Professor West to comment on the native forest estate in isolation.

Prof West has based his critique on the projected flow of product from native forests alone, and also on the perceived utility of that product stream for the current industry configuration. There is no basis for this assumption. It's not supported by any professional forestry standards, is entirely inconsistent with adopted governmental policy as determined in both the RFA and TCFA, and is not supported by the industry.¹⁸

The Complaints to the PEFC

38. Professor West was also questioned about the complaints made to the PEFC in response to his comments about sustainable yield.

I am aware that there have been three complaints made to PEFC. I am not aware of who made the complaints but I want to reiterate that I believe the words have been taken out of context.¹⁹

39. The Committee noted from the public documents that one of the primary complaints was made by Mr Geoff Law and concerned the ‘unsustainable logging of State Forest managed by Forestry Tasmania’²⁰.

40. Mr Bob Gordon from Forestry Tasmania was questioned at the hearing about the complaints arising from the release of the report.

Some groups, in Professor West’s words, misinterpreted and misused what he said and lodged complaints with PEFC and our certifier. ²¹

41. Mr Gordon went on to say:

¹⁸ Op.Cit. p.3
¹⁹ Op.Cit. p.6
²⁰ Professor Ian Ferguson – Forestry Tasmania’s Sustainable Yield Under the Australian Forestry Standard, p.27
²¹ Mr Bob Gordon, Hansard Transcript 27 July 2012, p1
Our certifier was going through our normal recertification process anyway and in doing that dealt with the two complaints that had been lodged and decided that, given the public nature of the complaints, that Professor Ian Ferguson, who was one of the world’s pre-eminent scientists on sustainable yield forestry, would be engaged by them to investigate and report on the complaints.\(^{22}\)

42. In seeking to consider the outcome of the complaints the Committee took into account the report of Professor Ian Ferguson of 4 June 2012 ‘Forestry Tasmania’s Sustainable Yield Under the Australian Forestry Standard’ (Appendix B).

43. The report incorporated an independent assessment of the sustainable yield methodology adopted by Forestry Tasmania and importantly dealt with the complaints made to the PEFC about the sustainability of the harvest.

44. Professor Ferguson’s report examined Forestry Tasmania’s process for calculating sustainable yield:

III. The Forestry Tasmania (2007) process of calculating sustainable yield meets best practice standards at that time but merits improvement in the course of the 2012 review of the Regional Forests Agreement in order to better address the Australian Forestry Standard principles underlying sustainable yield and the calculation of it.

In particular, the constraints imposed by current legislation to make available a prescribed minimum harvest of 300,000 m³/y of high quality sawlogs need to be amended to enable the Australian Forestry Standard principles underlying the calculation of sustainable yield to be properly implemented. Also, the implied rigidity of a steady annual harvest in the seamless transition of volume involving greater reliance on supply from regrowth forest and plantations needs to be reconsidered, not least in

relation to the uncertainty and risk attached to the transition to greater use of eucalypt plantation sawlogs and peeler logs.23

\textbf{IV. Forestry Tasmania regulated the harvest yield in a manner consistent with the requirements of the Australian Forestry Standard and the 2007 calculation of sustainable yield.}

45. Professor Ferguson’s report also dealt with the references made by the Chairman to ‘unsustainability’; whether his finding had accurately reflected the findings of the IVG and other relevant recent reports; and whether Forestry Tasmania had breached the Australian Forestry Standard requirements concerning the calculation and regulation of sustainable yield.

\textbf{V. In terms of the Australian Forestry Standard, I am unable to determine a rational basis in the Independent Verification Group reports, or related documentation, for the West (2012) assertions about the unsustainability of Forestry Tasmania sustainable yield calculations or practices. They do not appear to be found on the facts pertaining to the Australian Forestry Standard and the evaluations of the Forestry Tasmania process of calculating sustainable yield and regulating the annual harvest. From an Australian Forestry Standard viewpoint, they reflect an unfortunate confusion in the use of the term ‘sustainable yield’.24}

46. The Committee also noted the findings contained in Professor Ferguson’s report in relation to the complaint from Mr Geoff Law that had apparently made assertions about the sustainability of Forestry Tasmania’s logging of state forests and the Forestry Tasmania contracts with Ta Ann.

\textbf{VI. For reasons detailed in the main report, the allegation of unsustainable cutting has no basis in fact under the Australian Forestry Standard of PEFC provisions. This allegation is based on a misconception of the provisions of the Standard by Mr Law25}
And that

VII. Should Mr Law’s prognostications relating to the ability of plantation material to meet peeler contracts prove well founded during the 2012 RFA review or any later reviews, it will be incumbent on Forestry Tasmania to consider its contractual liability and promptly renegotiate the contracts to meet the Australian Forestry Standard provisions for sustainable yield.26

47. In consideration of the complaints, Professor West was also questioned more specifically about the issue of sustainable yield within the productive native forest estate under the management of Forestry Tasmania.

_It is very clear, and it is not a secret, that the native forest is being harvested above its long-term non-declining yield, both in respect of the legislatively required commitment to provide 300,000 m3 of high-quality sawlogs, defined as category 1 and category 3 sawlogs, and in respect of the contracts to provide 265,000 m3 of peeler billets to Ta Ann. There is no question, and I don't know of anyone who disputes it, that those requirements are substantially above the long-term sustainable yield of the publicly available native forest._27

48. Mr Gordon said of the calculation of sustainable yields by Forestry Tasmania:

_For every sustainable yield calculation we use what has actually happened for the last five years to adjust what we had theoretically predicted. For example, for every area of forest we harvest we compare the area that was harvested compared with what was planned and we also compare the volume per hectare by product type that was actually harvested compared with what we expected using multivariate analysis._28

26 Op.Cit. p.vi
27 Ibid
FINDINGS

1. The Chairman’s Report authored by Professor Jonathan West does not form part of the IVG documentation released by the Commonwealth and State Governments as part of the Intergovernmental Agreement process and was not treated as such by Government;

2. ‘Finding 1’ of the Chairman’s report concerning the sustainable yield practices of Forestry Tasmania is ambiguous;

3. Professor West has confirmed that ‘Finding 1’ has been taken out of context by external parties;

4. Professor West has confirmed the comments in his Chairman’s report were not critical of Forestry Tasmania, but questioned some of the conditions that have been imposed upon the organisation;

5. Professor West did not investigate the plantation and private forest estates relied upon by Forestry Tasmania in calculating their sustainable yields other than to note some of the risk for the industry associated with the plantation resources;

6. Professor West has confirmed that the IVG verification process was restricted in the scope of the task by its terms of reference in that it inquired into the sustainable yield of the publicly owned native forest estate, but not the forest estate as a whole;

7. Professor West has questioned the timing of the establishment of the IVG and whether it should more appropriately have been established at the commencement of the Intergovernmental Agreement process;

8. In accordance with the Australian Forestry Standard, Forestry Tasmania was subjected to a routine independent audit of its forest management systems by JAS-ANZ accredited certifying body NCSI during 2012, as part of their ongoing PEFC certification process.
9. Forestry Tasmania retained its certification as a result of the 2012 audit process;

10. Following the release of the Chairman’s report, complaints were lodged with the PEFC that concerned allegations about the ‘unsustainability’ of Forestry Tasmania’s logging in State forests;

11. Sustainability expert Professor Ian Ferguson was appointed by the PEFC during 2012 to independently assess two complaints that were made as a result of the Chairman’s report;

12. Professor Ferguson was unable to find a rational basis in the IVG documentation to support Professor West’s assertions about the unsustainability of Forestry Tasmania’s sustainable yield calculations or practice;

13. Professor Ferguson did not make any adverse findings in relation to the sustainable yield practices adopted by Forestry Tasmania in accordance with the Australian Forestry Standard;

14. Professor Ferguson did not find in favour of the complaint made by Mr Geoff Law who had sought to criticise the unsustainability of Forestry Tasmania’s harvesting practices in accordance with the Australian Forestry Standard, through complaints made to the PEFC;
Signed this first day of November two thousand and twelve.

Hon. Ruth Forrest MLC
Committee Chair

Hon Jim Wilkinson MLC
Inquiry Chair
APPENDIX A - Tasmanian Forests Intergovernmental Agreement

Independent Verification Group – Report of the Chairman
Tasmanian Forests Intergovernmental Agreement
Independent Verification Group

Report of the Chairman

The Tasmanian Forests Intergovernmental Agreement (TFIA) provided for the establishment of a group of experts, the Independent Verification Group (IVG), to advise the Prime Minister and Premier of Tasmania about matters of fact underlying the agreement. The key tasks assigned to the IVG were to:

“...verify stakeholder claims relating to sustainable timber supply requirements (including at the regional level), available native forest and plantation volumes, and areas and boundaries of reserves from within the ENGO-nominated 572,000 hectares of High Conservation Value native forest.”

The IVG has adhered closely to this mandate. While some stakeholders in the dispute, and many in the public and media, have pressured the IVG to expand its mandate to act as an ‘arbitrator’, the IVG has declined to accept such a role. We have directed our attention strictly to matters of fact in the three nominated fields.

Our goal has been to provide a body of independently validated information as a sound foundation for a durable agreement to end the decades-long conflict that has been so damaging to the fabric of Tasmania’s society and economy.

The IVG has been painfully aware of the difficulty of achieving this outcome, and the failure of all its predecessors. Since 1986, there have been 10 previous official governmental processes charged with finding a solution to the Tasmanian forest conflict:

1986 Lemonythyme and Southern Forests Inquiry—the Helsham Inquiry
1991 Intergovernmental Agreement over the Environment (Commonwealth)
1991 Resource Assessment Commission (Commonwealth)
1991 Forest and Forest Industry Strategy (Tasmania)
1992 National Forest Policy Statement (Commonwealth)
1994 High Conservation Value Forest Assessment (Tasmania)
1994 Interim Forest Assessment (Tasmania)
1997 2020 Plantations Vision (Commonwealth)
1997 Regional Forest Agreement and Comprehensive Regional Assessment
2004 Tasmanian Community Forest Agreement (Commonwealth)

All failed to resolve the conflict. It is important to understand why all these previous processes, which absorbed so much time and resources, and in which so much hope was invested at the time, did not prove durable. We wish not to repeat the mistakes of the past.
All previous processes shared a consistent pattern—one that doomed them to fail. All were established by governments essentially to serve as arbiters, with the outcome ultimately shaped by government; all undertook their work largely behind closed doors, usually with substantive engagement from only one side of the dispute; all attempted to reach a compromise trade-off; and all then attempted to impose that compromise on unwilling parties to the conflict through political and legislative processes.

The outcomes of these failed processes were strikingly similar. After months of effort, and extensive and expensive investigations, a compromise would be promulgated. In most cases the compromise consisted of the same three elements: a new area of forested land to be reserved (usually about 300,000 hectares), a grant fund to be established to enable the industry to "retool and modernise", and some form of legislation aiming to guarantee security of resource tenure into the future. In every case, one side or other (usually environmentalists), would at some point state that the compromise was not acceptable, in response to which the government of the day would insist that it was a 'reasonable balance', and proceed to enforce it through legislation.

The forest war would resume the next day. At the same time, the underlying economics of the industry would be cumulatively corroded by successive resource withdrawals, and harvesting would be pushed further above sustainable-yield levels, imperilling the industry's future. The legislated compromise might hold for a few years, before a new crisis broke out.

The present process differs from these failures in two important respects: it was not initiated or controlled by government, rather it has resulted from a substantial period of discussion and negotiation among parties to the conflict—environmentalists and industry participants—and it comes at a time of unprecedented challenge to the industry.

These twin differences may lay the foundations for the current effort to enjoy more durable success.

Tasmania's choices in the forest conflict

Tasmania today faces a stark choice. On the one hand, the potential *does* exist to achieve a resolution agreed by major participants in the conflict, with built-in mechanisms to ensure durability. On the other hand, it is conceivable that the outcome may be the worst possible from all points of view. Tasmania now faces a very real risk that both sides of the forest conflict may lose all that they have sought to protect. We are on the brink of losing both the forestry industry and the native forests that merit protection.

Surely such a statement is alarmist? How could such a disaster eventuate? It has become apparent in recent months that environmental non-government organisations now possess the ability to damage the forestry industry’s access to capital and markets sufficiently to curtail the industry’s profitability, to the extent that *the industry as a whole* ceases to be viable.
It is vital to understand that the wellbeing of each element of the native-forestry industry depends on the health of the whole. Unless each major component of the forest is able to be marketed profitably—including residue in the form of woodchips or pulp, smaller logs in the form of peeler billets, and larger, higher-quality sawlogs—it becomes uneconomic to harvest our forests at all. Such an outcome threatens to make the native-forest industry in its entirety unviable, and especially the government-owned entity that manages the forests and harvesting operations, even if individual components continued to be profitable.

This is much as if, were the beef industry not able to sell cuts of meat other than scotch fillet, cattle-raising would be unviable, even if scotch fillet could be sold at record prices.

By destroying the profitability of woodchipping, and potentially other segments of the industry including peeler billets and key parts of the sawmilling sector, environmental campaigns possess the capability to depress the industry's profitability to the point that the industry implodes. We may today be perilously close to just such a calamity.

But environmentalists should not gain any satisfaction from this outcome. No conceivably electable government in Tasmania or Australia would respond to such a collapse by declaring substantial new environmental reserves. Indeed, it is likely that community anger and bitterness would press political leaders to harden their stance against such reserves, and that the result would be increasingly determined efforts to rebuild the industry.

While this is not the only possible future path, Tasmania does face the real prospect of a dual disaster: the forestry industry ceases to be viable, and in reaction environmentalists face the loss of the very forests they seek to protect. A lose-lose outcome.

The IVG methodology

To avoid such a future, Tasmania needs to ground any resolution to the forest dispute on two vital principles: first, the industry must be restored to a sustainable-yield basis, and second, all major parties to the conflict must understand and accept any compromise solution. Without sustainability, the industry will ultimately exhaust its resource—and our analysis reveals the potential for this to occur in some segments alarmingly soon. In the process, industry participants will lose access to markets and capital. Neither investors nor customers in today’s world will invest in or accept products from forests that are being mined. At the same time, without broad acceptance, the conflict will merely resume on a new basis. Any resolution imposed from outside, even Parliament, will fail.

The IVG’s methodology and process has been carefully and specifically designed to meet these two requirements for a durable outcome. We have sought to answer three questions:

1. How much resource is each segment of the forest-products industry currently using?

2. How much of these resources can Tasmania’s forests supply on a sustainable basis?
3. What conservation values, if any, do the reserves proposed by the environmental organisations possess, and are these of the type that the nominated areas merit reservation to ensure these values are protected?

Key findings

Our results are detailed in the reports that follow. Two key findings, however, should shape any proposed resolution to the dispute. Neither side of the conflict will likely be happy with our conclusions, but we are confident our findings are well founded in fact and evidence:

1. Tasmania's native forests (not including plantations) have been and continue to be harvested substantially above long-term sustainable yield, in respect of the key product segments to which they provide resources.

The two main products currently sourced from Tasmania's native forests are high-quality sawlogs, which support the sawn-timber industry in supplying primarily building and presentation timbers, and peeler billets which supports the veneer-products industry, specifically Ta Ann. At present, the sale of woodchips from Tasmania has effectively halted, due both to environmental campaigns and low prices that analysis indicates are unlikely to recover for at least 5 years.

For high-quality sawlogs, Forestry Tasmania is committed by current legislation to provide a minimum of 300,000 cubic metres of resource each year, and until the exit of Gunns last year had signed contracts to supply an estimated 320,000 cubic metres.

Our finding—employing only Forestry Tasmania data with estimation models run by Forestry Tasmania personnel on Forestry Tasmania computers, and peer reviewed by eminent independent forestry experts, is that with appropriate allowances for non-retrievable timber due to mandatory forest-practices regulation (so-called "headroom"), the sustainable annual yield of high-quality sawlogs from native forest is between 117,600 cubic metres (allowing for a non-retrieval rate of 40%) and 156,800 cubic metres (allowing for a 20% non-retrieval rate). Put simply, Forestry Tasmania had been committed to harvesting sawlogs from native forest (not including plantations) at about double sustainable yield.

For peeler billets, Forestry Tasmania is committed by contract to provide Ta Ann with 265,000 cubic metres of resource each year until 2022, and it is our understanding that Ta Ann holds a contract option for this supply for a further 5 years beyond 2022. Our finding is that the sustainable yield of peeler billets from native forest is between 76,200 cubic metres (at the 40% headroom level) and 101,600 cubic metres (at the lesser 20% headroom level). This implies that Forestry Tasmania has also been harvesting peeler billets from native forest (again, not including plantations) at about double sustainable yield.
Some hope that Forestry Tasmania's plantations will make up this resource in future. Unfortunately, the amount of sawlogs and peeler billets that might be gained in future from Forestry Tasmania's plantations is highly uncertain, and it appears unlikely that a large supply of high-quality sawlogs and peeler billets will be able to be sourced from Forestry Tasmania's plantations in the next 20 years at least. It is particularly unlikely that these plantations will prove suitable to supply the sawmilling and veneer industries as they exist with current technology in Tasmania. One estimate is that a mere 7000 hectares of Forestry Tasmania plantations, for example, have been suitably managed to provide high-quality sawlogs. Ta Ann has advised that it is unlikely to be able to utilise more than a few per cent of plantation logs as peeler billets from plantations as they are currently managed, implying that Forestry Tasmania's plantations will be unlikely to supply this commitment in near- or medium-term future.

The problem, then, is that by the time it can be established whether in fact the plantations will prove suitable to supply high-quality sawlogs and peeler billets that can be processed by Tasmania's actual industry, with actually existing equipment and markets, harvesting above the long-term sustainable yield of the native forests will significantly deplete the resource on which we can confidently rely. Should the plantations not prove capable of supplying the sawmilling industry, it will be too late to restore the industry. The evidence we have analysed reveals this risk to be substantial.

It is important to recognise that sustainable yield is the most fundamental principle of sound forestry management. It is the Hippocratic Oath equivalent: the forests must not be harvested at a rate greater than that at which they regrow. Otherwise, the industry ceases to be renewable; it is mining. In summary, for Forestry Tasmania to commit to harvest Tasmania's native forests at levels double that of long-term sustainable yield would appear to expose the industry that exists today in Tasmania to excessive risk of resource depletion and market rejection, unless plantations prove in future able to provide large quantities of sawlogs and peeler billets, which at this point appears highly uncertain and to contradict a growing body of evidence and belief in the industry.

2. The areas proposed for reservation by the Environmental Non-Government Organisations do contain a range of conservation values, but not all these values would be lost if the forests were harvested once.

The ENGOs propose reserves amounting to 568,772 hectares. Forests within these areas fall into four categories:

1. Areas that contain values of a type that would be lost permanently were they to be clear-felled once. Such values include wilderness, old growth, certain rare and endangered species habitat, refugia, and certain rare forest ecosystem types. Some of these areas appear to merit their addition to the existing World Heritage Area.
2. Areas that both industry and ENGOs would agree should be harvested if these areas were placed in reserves. The ENGO proposals include small areas of softwood and hardwood plantations that would need to be regenerated to native forest were they to be included in reserves.

3. Areas in which selective harvesting will continue to be necessary to supply special-species timber, primarily blackwood, celery-top pine, and myrtle. The ENGOs have accepted such selective harvesting in certain areas. The total area of special-species timber zones included in the ENGO proposed reserve is 64,000 hectares.

4. Areas that prudent reserve design may suggest inclusion in future reserves, for purposes, for example, of catchment management, "smooth" boundaries, conservation connectivity, and scenic value, but which include values that would not irretrievably be lost were they to be harvested once. Such areas could be included in reserves either immediately, or harvested once then regenerated to a facsimile of natural native forest (for example, with high species variety) and then incorporated into reserves in future phases.

These two conclusions—in relation to sustainable yields and conservation value—appear to be intractably counter posed. If reserves are created, the sustainable yield will be reduced; if at least some of these areas are harvested, their conservation values will be lost. Surprisingly, however, the degree to which establishment of the ENGOs' proposed reserves would reduce the sustainable yield of Tasmania's native forests is smaller than might be imagined. If the entire ENGO-proposed reserve were to be created immediately, the likely sustainable yield of high-quality sawlogs would decline by 8,700 cubic metres and of peeler billets by 10,600 cubic metres. The reason this shrinkage is less substantial than the proportional reduction of available native forest area is that were such reserves to be created, the necessary allowance to provide for proper environmental management through forest-practices regulation would be greatly reduced, due to many of the objectives of regulation being achieved by reserves, from a suggested 30%-40% to about 10%. In a sense, the entire 35-year forest conflict in Tasmania has been fought over less than 10,000 cubic metres of sustainable yield of high-quality sawlogs and about the same volume of peeler billets.

Necessity of industry transition to manufacturing and plantation base

But the estimates of timber resource availability revealed above point clearly to a single conclusion on which all sides of the dispute agree: the future of the Tasmanian forest-products industry resides in a transition to plantations. The available native forest is simply no longer sufficient on a sustainable basis to provide for an industry of even its present reduced (post-Gunn's) size. The major available resource will increasingly become plantations. 55,960 hectares of hardwood and 52,670 of softwood plantation have been created by Forestry Tasmania, on top of substantial investments by the private sector, and will become available for harvesting in significant volume progressively from 2020 onwards. The issue we face, therefore, is not whether a transition is needed, but when and on what terms.
Importantly, however, a plantation-based industry will be very different to the current native-forest-based industry. The preponderance of research and testing available to the IVG, along with experiential evidence from sawmilling and peeler-billet trials, agrees that the available plantations will not be able effectively to supply Tasmania’s forest-products industry as it currently exists. This is not at all to imply that the plantations are not valuable and useful. They will, in fact, potentially provide the input for a vibrant industry producing pulp, paper, and other products reconstituted from pieces of plantation timber. And the category "reconstituted products" includes a wide range of offerings suitable for multiple applications: flooring, presentation timbers, and structural supports, among many others.

But these are manufactured products, rather than de-constituted products (the present sawn timbers, veneers, and wood chips are essentially disassembled products). The result is that Tasmania’s forest-products industry will necessarily undergo a transition from reliance primarily on sawn-products and veneers, with residue exported as woodchips, to an industry based primarily on manufactured products along with a reduced native-forest based sector.

All sides to the present dispute agree that this is the inevitable and necessary future, ultimately. The resource that will become available will support no other. And it offers an attractive possibility: a renewable resource, based on non-contested forests and forest practices, with substantially greater employment than today. Much of Europe, North America, and New Zealand has arrived at this future.

But two critical issues remain: what will be needed to create that future, and what will become of the conservation values in the remaining native forest in the period between the present and the time the plantations mature for harvesting?

To bring a plantation-based manufacturing industry into existence, substantial private investment will be required. A manufacturing industry of the type sketched here requires considerable investment in capital equipment, product development, and marketing. In the present climate of bitter dispute and ever-shifting political commitments, such investment is unlikely. Investors already face risk from failed products, machines that don't work as expected, foreign competitors, shifts in customer requirements, currency gyrations, and interest rates. Magnifying these risks with social and political conflict can render Tasmania’s forest-product industry uninvestable.

Tasmania's public plantation forests will not begin to be sufficiently mature to harvest in volume for another 20 years. Between the present day and the time Tasmania's forest industry is able to rely on plantations to produce manufactured products, Tasmania faces a choice: either harvest the remaining native forest, in a climate of ongoing conflict that strangles investment in the future, or make reserves that preserve important conservation values and prepare for the transition early.
Outlines of a solution

The independently verified information provided in this report suggests the outlines of an agreement to end the present conflict:

1. Restore the native-forest industry to sustainable yield.

This will require renegotiation of existing sawmilling and peeler-billet contracts to bring these into line with sustainable yields of available resources for these products. And it will require the forest-products industry to accept a reduced native-forest resource supply. The high-quality sawlog supply would be somewhat greater than 120,000 cubic metres, depending upon how many hectares were agreed to be harvested once before inclusion in future reserves.

2. Begin to plan now to build a plantation-based industry.

Already several key industry participants, in particular Gunns and some leading sawmills, have begun such planning. Government should provide an overarching framework for this transition, which avoids shifting all the risk from Forestry Tasmania to the private industry, and helps manage that risk.

3. Reserve key forests in which important conservation values would be lost were harvesting to occur once.

While the exact area that could prudently be reserved remains to be agreed, the information provided below enables the ENGOs to understand which areas of forest could be harvested once without permanent loss of conservation values, which areas are less important, and which are both important and would be lost with even once-off harvesting.

4. Allow once-off harvesting in forests agreed to contain values in which such harvesting would not permanently destroy conservation values.

These areas also remain to be agreed, but they could be committed in advance to reservation status after they are harvested once according to an agreed timetable. They could then be regenerated to a facsimile of natural forest, including with diverse species replicating the mix present in the forests' natural state.

5. Establish special-species zones in which clear-felling is not permitted but selective harvesting on a sustainable basis is allowed.

Tasmania's special-species wood-based manufacturing industry—including boat-building, furniture, presentation timbers, and craftwood—is a vital part of our economy, one of which all Tasmanians are proud. A secure future for this sector depends upon continued access to a relatively tiny amount of the rare and unusual timbers that this industry employs. These include blackwood, celery-top pine, myrtle, and lesser varieties such as sassafras. The zones from which these woods are drawn should be granted a status that protects them from wholesale clearing, but ensures that those timbers continue to be available.
6. Ensure continued access for mineral exploration and exploitation.

In areas found here to be prospective for minerals, access should be guaranteed for mineral exploration and exploitation, and once either found not to contain minerals (which, of course, will be the large majority) or extraction is concluded (inevitably, a tiny minority), these areas could be included in next-phase reserves.

7. Cease environmental campaigns to undermine industry access to markets and capital.

Once the initial reserves and phased transition plan is agreed, the ENGOs must agree to terminate their campaigns against elements of the Tasmanian forest-product industry. This includes the sawmilling sector, veneers at Ta Ann, and a potential pulp mill.

8. Establish resource security through legislation.

Once an agreement has been reached, future and present investors in the Tasmanian forest products industry must know that continued access to the non-controversial resource is agreed, and protected in legislation.

Only the Commonwealth Government possesses the resources necessary to underpin the investment required to rebuild the Tasmanian economy, including its forestry sector, on a more diverse and sustainable basis. The Commonwealth has indicated it is willing to assist, provided a resolution can be agreed in Tasmania. The consequences of foregoing this opportunity might be generation-long stagnation, as we remain mired in disputes of the past.

Agreement to the elements of a resolution suggested here will require leadership on both sides. Both sides will need to accept compromises that they have resisted for decades: for the industry a reduction of available resource areas; for conservationists harvesting of areas they would prefer to see reserved, and to cease their campaigns against established targets. But the alternative threatens to be disaster.

The potential is for Tasmania finally to transcend a conflict that has paralysed our economic, social, and political life for three and a half decades. In the process we can both establish a reserve system that would be the envy of the world, and alongside that reinforce a newly dynamic manufacturing-based, and fully renewable, forest-products industry, with broad community support, enjoying greater employment and value-added than at present.

Surely, after so much bitterness, commitment of energy, and frustration, and facing such dire consequences, we can find the will to do this.
APPENDIX B- Professor Ian Ferguson - Forestry Tasmania’s Sustainable Yield Under the Australian Forestry Standard
FORESTRY TASMANIA’S SUSTAINABLE YIELD UNDER THE AUSTRALIAN FORESTRY STANDARD

Professor Ian Ferguson
4 June, 2012

A Report Commissioned by NSC International
Table of Contents

EXECUTIVE SUMMARY .. iv

1. INTRODUCTION ... 1

2. INCLUSION OF PLANTATIONS ... 2

3. SUSTAINABLE YIELD ... 4
 3.1 Sustainable Yield – Underlying Principles ... 4
 3.2 Sustainable Yield - Method of Calculation ... 5
 3.3 Australian Forestry Standard Definitions .. 6
 3.4 Best Practice ... 8
 3.5 Forestry Tasmania’s Sustainable Yield .. 9
 3.6 Headroom Factors and Discounts ... 12
 3.7 Risk .. 15
 3.8 Wildfires .. 17
 3.9 Plantations ... 18
 3.10 Legislative Provision of a Minimum Harvest ... 19
 3.11 Conclusions .. 21

4. THE ALLEGATION OF UNSUSTAINABILITY .. 22
 4.1 Conclusions ... 26

5. COMPLAINT FROM MR. G. LAW .. 27
 5.1 Unsustainable Cutting ... 27
 5.2 Signed Contracts .. 27

6. LITERATURE CITED ... 29

APPENDIX A .. 33
TABLES AND FIGURES

Table 1. Estimated opportunity costs of an additional 1% reduction in sustainable yield. 13

Figure 1. Distribution of areas of forest growth stages within State forest in 2006 and 2095. 14

Figure 2. Actual high quality eucalypt sawlog supply from State forest. 20
EXECUTIVE SUMMARY

1. NCSI commissioned this review to investigate two complaints, one from the PEFC relating to personal comments by Professor West, the Chair of the Independent Verification Group, and the other, a submission by Mr. G Law.

2. The Terms of Reference were as follows:

Verify if it is appropriate that plantations are included in Forestry Tasmania's sustained yield calculations;

With reference to the requirements of the Australian Forestry Standard, determine whether the claims of unsustainable harvest in relation to the activities of Forestry Tasmania are valid; and

Determine whether the assertions made by the Chairman accurately reflect the findings from the IVG (Burgman and Robinson) Report and any other relevant recent reports relating to Forestry Tasmania.

3. In relation to Term of Reference #1, I concluded that:

I. The documentation for the Australian Forestry Standard enables plantations to be included in the Defined Forest Area to be certified. The 1997 Regional Forest Agreement and the Tasmanian Community Forest Agreement envisaged that Forestry Tasmania wood supply was to be supplemented and sustained in part by plantations. The documentation for the Australian Forestry Standard certification identified those plantations and their tenure. The provisions of the Standard require that those areas of plantation be taken into account in calculating the sustainability of the harvest for the Defined Forest Area.

4. Following a review of the principles underlying sustainable yield, the methods of calculation, the Australian Forestry Standard's definitions of sustainable yield, and constrained optimization, I examined Forestry Tasmania's inventory and planning data. These have been the subjects of several reviews and audits, including two since the preparation of the estimates of sustainable yield for the 1997 Regional Forest Agreement. I concluded that:

II. With some exceptions, the underlying Forestry Tasmania (2007) inventory and planning data reflected the current and future state of the forest, markets and dependent industries appropriately at that time. Most of the exceptions relate to improvements recommended in the course of other reviews and some, relating to a stochastic analysis, have been elaborated further in this review.

5. Under the Australian Forestry Standard, risk is a factor that must be considered in calculation of the sustainable yield. Because some of the recommended improvements related to issues about area and volume discounts, headroom factors and a safety margin to take account of various sources of risk, the review examined these matters in greater detail to provide greater clarity, avoid double counting, and point out the opportunity costs of measures involved in achieving desired environmental and wood production outcomes and their impact on future revisions of the sustainable yield.
6. The details of Forestry Tasmania’s process of calculating sustainable yield were examined further in relation to risks, including the risks posed by wildfires, *E. nitens* plantations, the legislative provisions requiring Forestry Tasmania to make available a minimum supply of 300,000 m³/y eucalypt sawlogs and peeler logs. In relation to Term of Reference #2, I concluded that:

III. The Forestry Tasmania (2007) process of calculating sustainable yield meets best practice standards at that time but merits improvement in the course of the 2012 review of the Regional Forests Agreement in order to better address the Australian Forestry Standard principles underlying sustainable yield and the calculation of it.

In particular, the constraints imposed by current legislation to make available a prescribed minimum harvest of 300,000 m³/y of high quality sawlogs need to be amended to enable the Australian Forestry Standard principles underlying the calculation of sustainable yield to be properly implemented. Also, the implied rigidity of a steady annual harvest in the seamless transition of volume involving greater reliance on supply from regrowth forest and plantations needs to be reconsidered, not least in relation to the uncertainty and risk attached to the transition to greater use of eucalypt plantation sawlogs and peeler logs.

IV. Forestry Tasmania regulated the harvest yield in a manner consistent with the requirements of the Australian Forestry Standard and the 2007 calculation of sustainable yield.

7. Professor West, Chairman of the Independent Verification Group, made the assertions regarding unsustainability in a personal capacity. My charter was to see whether they accurately reflected the findings of that Group and other relevant recent reports relating to Forestry Tasmania and so to assess whether Forestry Tasmania has breached the Australian Forestry Standard requirements concerning the calculation and regulation of sustainable yield.

V. In terms of the Australian Forestry Standard, I am unable to determine a rational basis in the Independent Verification Group reports, or related documentation, for the West (2012) assertions about the unsustainability of Forestry Tasmania sustainable yield calculations or practices. They do not appear to be founded on the facts pertaining to the Australian Forestry Standard and the evaluations of the Forestry Tasmania process of calculating the sustainable yield and regulating the annual harvest. From an Australian Forestry Standard viewpoint, they reflect an unfortunate confusion in the use of the term ‘sustainable yield’.

8. Mr. Law’s submission regarding the alleged unsustainability of logging of State forests by Forestry Tasmania overlaps the PEFC complaint. Hence in relation to those matters, I concluded:

VI. For reasons detailed in the main report, the allegation of unsustainable cutting has no basis in fact under the Australian Forestry Standard or PEFC provisions. This allegation is based on a misconception of the provisions of the Standard by Mr. Law.

9. Mr. Law also raised a specific complaint that the Forestry Tasmania contracts with Ta Ann to supply peeler billets cannot be met sustainably. However, Mr. Law does not seem to have recognized that the contracts allow Forestry
Tasmania to source peeler billets beyond State native forests, including from plantations and/or from private forests, which expands the scope of the supply review that is involved. The present evidence is uncertain and warrants further review.

VII. Should Mr. Law’s prognostications relating to the ability of plantation material to meet peeler contracts prove well founded during the 2012 RFA review or any later reviews, it will be incumbent on Forestry Tasmania to consider its contractual liabilities and promptly renegotiate the contracts to meet the Australian Forestry Standard provisions for sustainable yield.
1. INTRODUCTION

Following the release of a report by the Professor West (2012), Chairman of the Independent Verification Group, and subsequent complaints made by several individuals to PEFC, NCS International Pty Ltd (NCSI) received a formal complaint from PEFC regarding allegations of unsustainable harvesting against Forestry Tasmania (see Appendix A). NCSI commissioned this review to investigate the allegation. It later received a submission from Mr. G. Law that overlaps the PEFC complaint and is therefore considered after dealing with the PEFC complaint.

The NCSI Terms of Reference for the review were as follows:

1. Verify if it is appropriate that plantations are included in Forestry Tasmania’s sustained yield calculations;
2. With reference to the requirements of the Australian Forestry Standard, determine whether the claims of unsustainable harvest in relation to the activities of Forestry Tasmania are valid; and
3. Determine whether the assertions made by the Chairman accurately reflect the findings from the IVG (Burgman and Robinson) Report and any other relevant recent reports relating to Forestry Tasmania.

The exercise will involve reviewing relevant documents including (but not limited to):

- Forestry Tasmania’s response to PEFC complaint (sent to NCSI on 23rd April 2012)
- AFPA letter to NCSI regarding PEFC complaint
- The Report of the Chairman of the IVG
- The Burgman/Robinson report
- The Tasmanian Regional Forest Agreement
- Tasmanian Community Forest Agreement
- Forestry Tasmania’s wood review summaries

The report first addresses whether plantations are included in the Defined Forest Area that prescribes the forest areas covered by the Australian Forestry Standard certification of the Forestry Tasmania forest estate. It then reviews the definitions and guidelines pertaining to sustainable yield in the PEFC and Australian Forestry Standard documentation to establish the basis on which a harvest might be deemed to be unsustainable. It examines the evidence pertaining to Forestry Tasmania’s calculation and implementation of the sustainability of harvesting. It goes on to report on whether the assertions made in the report of the Chairman of the Independent Verification Group (West, 2012) accurately reflect the findings from the Burgman and Robinson (2012) report and any other relevant recent reports relating to Forestry Tasmania. Finally, it addresses Mr. Law’s complaint.
2. INCLUSION OF PLANTATIONS

The Australian Forestry Standard documentation (Australian Forestry Standard, 2007: p11) states that ‘The AFS can be applied to any defined forest area being managed for wood production, irrespective of scale or type of ownership, or whether native or planted forest.’ It goes on to define the Defined Forest Area as follows (Australian Forestry Standard, 2007:p 12):

An area of forest (including land and water) to which the requirements of this Standard are applied, and to which the forest manager can demonstrate management control, which allows them to achieve the requirements of this Standard.

And to elaborate on its interpretation (Australian Forestry Standard, 2007:p31)

The forest manager will need to specify or define an area of forest (including land and water) to which the requirements of the AFS are applied. The defined forest area does not have to be a contiguous block or parcel of land. The forest manager will need to demonstrate management control over the defined forest area, which allows them to achieve the requirements of this Standard.

The intent of the above guidance is to provide sufficient flexibility to allow forest managers to define the coverage of their AFS certificate in a way which reflects their business needs and differing operational situations. Nevertheless, it is intended that this guidance should preclude an organization omitting elements of its operation, which should be properly included in its defined forest area from the scope of its certification/registration.

NOTE: In certain circumstances, two organisations may have forest management interests in the Defined Forest Area with one having a custodial or ownership right whilst the other has a management or operational role. The organisation seeking certification under the AFS will need to demonstrate that it has management control over the forest operations through appropriate agreements or contracts, for the purpose of AFS outcomes.

The last paragraph is noteworthy, enabling inclusion of those areas of native or planted forest held under lease, joint venture agreement, or other similar property rights giving Forestry Tasmania control of the harvest.

Thus there is unequivocal evidence that Forestry Tasmania can include plantations in its calculations pertaining to the sustainability of harvest on its Defined Forest Area.

The formal inclusion of plantations in the Defined Forest Area is set out in the Forestry Tasmania (2011a: p1-4) document headed ‘AFS Defined Area Procedure’. Plantations included in Forestry Tasmania’s Defined Forest Area are summarized by species, region, year of establishment and designated pruning regime in the Forestry Tasmania (2011b) Final Report to the Signatories of the Tasmanian Forests Statement of Principles and total 36,674 ha.
2.1 Conclusions

The documentation for the Australian Forestry Standard enables plantations to be included in the Defined Forest Area to be certified. The 1997 Regional Forest Agreement and the Tasmanian Community Forest Agreement envisaged that Forestry Tasmania wood supply was to be supplemented and sustained in part by plantations. The Australian Forestry Standard documentation identified those plantations and their tenure. The provisions of the Standard require that those areas of plantation be taken into account in calculating the sustainability of the harvest for the Defined Forest Area.
3. SUSTAINABLE YIELD

3.1 Sustainable Yield – Underlying Principles

Much attention has rightly been focused on sustainability in recent years and on sustainable forest management and sustainable yield in particular. The most widely cited definition of sustainability rests on the definition of sustainable development by the Bruntland Commission (1997):

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

The central theme of this definition is intergenerational equity – fairness to future generations. Economists have grappled with this issue for many years because it bears on evaluations of public investment, such as those involved in regulating forest harvesting, where we forego present consumption to invest in future consumption by later generations. Because long time periods of investment are involved, the discount rate plays a pivotal role in these evaluations.

Argument over the social rate of discount has a long history that continues today. Some time ago (Ferguson, 1996), I rationalised that desire for intergenerational equity in valuing utility over time through consideration of the social rate of time preference, the discount rate that measures the relative preference for present over future consumption. I posited a discount rate that followed commercial values over the investment time horizons that are common (i.e. generally less than 50 y), but then declined progressively thereafter until it reached a steady low state founded on our unwillingness to discriminate between the consumption of successive future generations in the long-distant future. Building on earlier contributions, research by Chichilnisky (1996) and Heal (1998) has strengthened support for that hypothesis. Heal (1998) describes this approach as seeking a balance between a ‘dictatorship of the present’ and a ‘dictatorship of the future’, and it comes much closer to encompassing the complexity and goals of intergenerational equity.

Boardman et al (2011), in their recent book on cost-benefit analysis, expand on this approach, identifying four reasons to consider a time-declining discount rate for intergenerational projects – those with significant effects beyond 50 years. Those reasons can be reduced to three, given the similarity of two of them.

(1) In practice, individuals generally appear to be ‘time inconsistent’ in applying lower discount rates to far distant outcomes,

(2) An ethical dilemma exists between being fair to future generations and economic evaluations that indicate that the discounted net benefits received 50 years and more ahead are trivial, and

(3) The further we look into the distant future, the greater the uncertainty that applies to what the discount rate at that point of time should be. If we recognize uncertainty in the form of a probability distribution, the effect is to make the effective certain-equivalent discount rate reduce much below the mean value of the discount rates – more so, the longer the time period concerned.
Based on research by Newell and Pizer (2003), Boardman et al (2011) recommend real discount rates of 3.5% up to 50 years, declining progressively to 0% after 400 years. The last value, however, is inconsistent with the geometric product of the underlying marginal social rates of time preference (see Ferguson, 1976) and goes too low, in my view.

Of course there are many other issues concerning the shadow pricing of revenues and cost in public investments to reflect other forms of market failure (Boardman et al, 2011; Campbell and Brown, 2003). But the social discount rate is a major philosophical issue in any consideration of long distant public investments because of the impact of discounting.

3.2 Sustainable Yield - Method of Calculation

Not surprisingly, the practice of calculating sustainable yield generally seeks to avoid the philosophical issues associated with intergenerational equity, and sometimes avoids the use of social discount rates, entirely. So let us now move to review the practice.

In Australian forestry, sustainability is normally measured and expressed in terms of the ‘sustainable yield’. The term ‘sustainable’ probably in part owes its origins to an earlier inquiry (Ferguson, 1985) in which I drew a distinction between the then widely used term ‘sustained yield’ and ‘sustainable yield’. The former implied a rigid target to be achieved. The latter implied a potential level, not necessarily a value that had to be attained, but one that should not be exceeded over the long term. The point being that sustainability is not prescribed by a single immutable value in the case of wood production, or indeed other uses (Ferguson, 1996)

The popular connotation of sustainability tends to focus on a constant supply — THE sustained yield. It is misleading because the paths of our global, national and regional economies are characterized by constant change, for the most part involving population and economic growth over the long term, overlaid with marked cyclical fluctuations that are very uncertain. Attempts to impose an absolutely steady supply over the planning horizon for a large estate, such as Forestry Tasmania’s, equate with trying to stem the tide. However, there is merit in having a set of supply targets that are not to be exceeded in the long run, subject to periodic review in the light of changes in markets, forests and knowledge.

Sustainable forest management is concerned with the intelligent management of forest structures that, as in the case of Forestry Tasmania, are often sorely imbalanced in terms of the uneven distributions of age-classes and other forest conditions. Not every fluctuation can be perfectly smoothed out, nor should they be. The essential question to be addressed at the end of the planning horizon is whether the Tasmanian public forests will then be in a better condition than they are now. How we might best assess that condition is an important and evolving issue, discussed in a later section. A better future condition, nevertheless, is the crux of the intergenerational equity issue – fairness to later generations - that underpins the notion of sustainability developed by Bruntland Commission (1997) and others.

Elsewhere I have expressed personal views on how such calculations of sustainable yield might best be made and these differ, in some respects, to the methods used by Forestry Tasmania (Ferguson, 2009). However, there is no unanimity within
scientific or forestry circles on these matters and they will continue to change as new and better technologies in computing, optimization, geographic information systems, forest inventory and risk analysis emerge. In any event, the issue for this review is what provisions the Australian Forestry Standard stipulates, as they are the criteria by which certification must be assessed.

3.3 Australian Forestry Standard Definitions

The Australian Forestry Standard (2007) defines sustainable yield as 'The yield that a forest can produce continuously at a given intensity of management' and clearly has shades of the old sustained yield notion. However, later references in the standard make it clear that flexibility and adaptation is required. Section 4.1.2 prescribes the development of a forest management plan, in which the rationale for the annual harvesting rates is described.

4.1.2 The forest manager shall develop a forest management plan, or equivalent instruments, that—

- identifies applicable legal requirements and other external requirements to which the forest manager subscribes;
- identifies and assesses the significance of specific aspects and impacts of activities relevant to the full range of forest management performance requirements of this Standard;
- sets management objectives and targets and establishes a monitoring process for identified significant impacts relevant to the forest management performance requirements of this Standard; and
- respects stakeholder input provided in accordance with requirement 4.2.2.

- the forest management plan or equivalent instruments should provide:
 - scope and objectives of management;
 - description of the forest estate and values to be managed, including those important for the protection of social benefits;
 - rationale for the annual harvesting rates;
 - description and rationale for silvicultural regimes; and
 - reference to relevant operating conditions and controls for specified activities.

NOTE: The forest management performance requirements given in requirements 4.3.1 to 4.9.5 provide for protection and maintenance of environmental, economic, social and cultural values.

Sections 4.4.1 and 4.4.2 state:

4.4.1 The forest manager shall identify existing productive uses of the defined forest area to support the maintenance of the land's long-term productive capacity and ensure it is not compromised by wood production.

NOTE: Requirement 4.8.3 relates to the exercise of existing legal or traditional uses of the forest, which may include productive uses.

4.4.2 The forest manager shall plan forest operations to ensure the productive capacity of the land, (see requirement 4.4.1) is not compromised.
Planning shall consider:

a) forest growth and forest products yield estimates;
b) future land use intentions;
c) rotation/cutting cycle program;
d) scale, intensity and timing of operations;
e) expected markets; and
f) development and maintenance of infrastructure.

Forest managers managing plantations shall also ensure that planning considers the selection of species for plantation establishment.

Section 4.8.3, while requiring that legal obligations be met, allows some leeway to negotiate outcomes under certain conditions:

4.8.3 The forest manager shall allow exercise of existing legal or traditional uses of the forests to continue.
Where such uses threaten the condition of the forest or the achievement of the forest management performance criteria, the forest manager shall pursue negotiated outcomes.

The present and future condition of the forest can be examined in terms of the present and predicted distribution of age classes, stand structures and forest types and this has been done by Forestry Tasmania (2011b) in recent analyses. In Western Australia (Ferguson et al., 2001), structural goals have been prescribed for the end of the planning horizon. However, with the development of more sophisticated geographic information systems and modes of spatial analysis, it may be desirable to refine that process further and examine spatial distribution goals, such as those relating to fragmentation, connectedness and diversity, to be achieved at the end of the planning horizon.

The planning process described above is the heart of the calculation of sustainable yield. Neither the Australian Forestry Standard documentation nor the PEFC documentation provide detailed guidelines on how sustainable yield for wood production might best be calculated. Considerable literature exists on this topic because it is at the core of the sustainable management of almost all large forest estates. The most recent major works on the calculation of sustainable yield are those by Buongiorno and Gilless (2003), Weiskittel et al. (2011) and Amacher et al. (2009).

So how is sustainable yield calculated? There are basically three methods:

- Sustained yield formulae: these are historic and are generally only used today as very crude gross error checks.
- Simulations: these are techniques that take the present forest inventory data and ‘grow’ it into the future, based on a set of assumed silvicultural treatments and harvest levels. In practice, the process is repeated several times using a different set of options until an acceptably sustainable path is obtained.
- Optimization: These use a simulation model to develop the data needed to investigate many options at once and to select the best of those mathematically using Linear Programming or similar techniques.

Most large forestry entities use optimization, as does Forestry Tasmania (Whiteley, 1999; Riddell and McLarin, 2003).
The mathematical construction of the model is complex and has evolved into a very sophisticated system as the more detailed inventory data, faster computing systems, and better optimization systems have been developed. Spatial integration with the geographic information systems has also added complexity and much greater accuracy in basic land base data. Most use Linear Programming techniques to solve the constrained optimization problem, for which well-developed commercial software is available.

3.4 Best Practice

Terms like ‘constrained optimization’ may summarize the mathematics succinctly but obscure the essential elements from the general reader and hence a brief summary of what is generally involved in ‘best practice’ may help.

The first step is to identify the areas on which wood production is permitted, thereby excluding formal and informal reserves from the calculation of the sustainable yield of wood production. Formal reserves are those created under legislation, such as national parks and the like. Informal reserves are those stipulated under regulations such as the codes of forest practice and involve stream buffers, wildlife corridors and local reserves to protect rare or endangered species.

The second step is to identify the nature of the objective for wood production. Is it to maximize the sum of annual wood harvests, or to maximize the sum of the discounted net revenues? More importantly, what constraints are to be placed on this maximization and over what planning horizon?

Most large commercial forestry organizations maximize discounted net revenue because this enables a link to the valuation of the estate for accounting purposes, albeit subject to some peculiarities of the accounting standards (Ferguson and Leech, 2007; Leech and Ferguson, 2011). The Auditor-General of Tasmania (2011) recommended that a risk free rate of discount be adopted and suggested targeted rates of return of two to three percent on assets might be appropriate, given certain conditions. However, the Auditor-General stressed that ‘this should not be taken as our agreeing that returns of two to three per cent should be regarded as acceptable particularly over the longer term’, noting that the choice of discount rate was a matter for Forestry Tasmania to justify. This opens consideration of the earlier discussion about the social rate of discount.

While the choice between maximizing wood flows and maximizing discounted net revenues may initially seem critical, it seldom is, because the constraints placed on the objective dominate the solution, especially where those constraints deliberately ensure that the condition of the forest at the end of the planning horizon is improved over that at the start.

As argued elsewhere (Ferguson, 2009), extending the planning horizon beyond 50 years seems to stretch credulity, given the uncertainties attached to predictions beyond 20 year and even more so beyond 50 years. Nevertheless, in using a 90-year planning horizon, Forestry Tasmania has implemented measures to ensure that the condition of the forest is improved at the end of it, relative to the start. This is based on a comparison of the distribution of age classes and forest structures and is illustrated in a later section of this report.
The major silvicultural options affecting harvest yields such as thinning, clear-felling, selective harvesting, regeneration, planting and pruning need to be identified. For a particular planning period, only certain stands will be old enough to carry out these harvest operations, so there are a plethora of area constraints for each of the nine 10-year planning periods in the Forestry Tasmania planning model. There are generally upper and lower bounds on the aggregate volumes of wood harvested from particular regions or on special timber species, based on market forecasts relating to the demand for wood of various qualities and properties, together with those maintaining viable minimum supply levels under contracts and agreements. And there are constraints to mitigate negative impacts on environmental services such as landscape aesthetics or wildlife habitat (Burgman et al., 1994).

Of course, no solution from such a seemingly black box exercise should be accepted on face value and hence the need for public consultation and for periodic audit and review, to adapt to changes in conditions and knowledge, and incorporate updated data. These steps are required by the Australian Forestry Standard (Sections 4.1.2, 4.1.4, 4.1.5 and 4.8.3).

The questions for this review are then:

1. How well do the underlying Forestry Tasmania inventory and planning data reflect the current and future state of the forest, markets and dependent industries? Without reasonably accurate inventory data and soundly based planning data, the entire calculation of sustainable yield is clearly at risk.

2. Does the Forestry Tasmania process of calculating sustainable yield address the principles underlying sustained yield and the calculation of it, as prescribed in the Australian Forestry Standard?

3.5 Forestry Tasmania’s Sustainable Yield

Independent audits and reviews of Forestry Tasmania Inventory planning data have been carried out many times, especially since the introduction of the Regional Forest Agreement process in 1997. Forestry Tasmania’s capacity to develop a more detailed and accurate inventory and a more detailed and better basis for planning has improved progressively, based on the implementation of recommendations from these reviews, together with the evolution and implementation of better technologies. The most recent reviews date from 2011 and 2012.

The term ‘headroom’ was first used by Forestry Tasmania in its 2011 Final Report to Signatories to embrace the seemingly unpredictable risks such as future changes to the Forest Practices Code (Forest Practices Board, 2000) and changes in social license to operate. Burgman and Robinson (2012) expanded the concept to include wildfires, climate change and perhaps other global or economic crises.

Discounts are often applied separately to those of headroom adjustments, as in the approach taken by Forestry Tasmania. Unfortunately, in other reviews, headroom adjustments often also include discounts, blurring the distinction. For this reason, I shall make a clear distinction between ‘discounts’ - the evidence-based corrections - and a ‘safety margin’ that is intended to cover seemingly unpredictable risks. ‘Seemingly unpredictable risks’ include cases such as the habitat of a rare animal.
where we know that the habitat must exist but we cannot predict where or its extent (i.e. predictable in a limited sense but not quantifiable).

Whiteley (1999) described the detailed framework of the system used in the calculation of sustained yield at that time. That system has carried forward, subject to a number of improvements. Riddell and McLarin (2003) and McLarin (2006) have updated and elaborated that description.

Brack and Vanclay (2011) conducted an independent review of the Forestry Tasmania Sustainable Yield Systems in June, 2011 as part of the verification process required by the Signatories to the Statement of Principles. They stated that:

Spatial constraints imposed on the solution by the impacts of reserves and the intensification of operations on the remaining area are often confounding. For example a nominated percentage reduction in available area often leads to a greater reduction in economically harvestable volume as extra patches of area become inaccessible. The list of spatially related factors that are reported as being included in the “headroom discount” have the potential to introduce a substantial reduction in the “operational supply”. Experiences in Canada suggest that coupe dispersal practices, if comprehensively applied, can reduce operational supply significantly. The effect of other spatial constraints can only be determined by case studies as the quantum of the impacts is unique to the actual spatial patterns of the resource. A more precise estimate of the discount requires detailed simulation studies, but it is our considered opinion that it may be prudent to increase the 10% headroom discount.

While I agree with the need to apply evidence-based area discounts to reflect spatial and other area constraints or volume biases, the description above blurs the distinction between such discounts and the headroom. That blurring recurs in later reviews and is the source of some concern as to the propensity for double counting when substantial increases in headroom are mooted but the identification of components is imprecise. Nevertheless, area and volume discounts are conceptually straightforward, even though they may be time consuming and costly to measure or estimate.

Brack and Vanclay (2011) reported that the inventory and planning data were ‘appropriate and conformed to best practice’, noting that substantial improvements had been made following the (Dr Phil) West (2007 & 8) review, not least in relation to the plantation estate for which, in 2007, 88% was too young to undertake routine inventory collection and therefore relied on field estimates of Site Index. By 2010, only 30% were too young. Forestry Tasmania had also applied corrections to remove potential biases in the estimates of growth.

Brack and Vanclay (2011) identified possible areas for improvement, notably relating to coupe dispersal and plantations. They concluded:

The Reference Group can be confident that the scenarios presented by FT offer a reliable indication of resource availability, and that the scenarios are a reasonable basis for comparing options. While the underlying areas, inventory, and simulations conform to best practice, it is not possible to assert a precise long-term non-declining yield for any of the three scenarios without further specification of operational requirements (notably coupe dispersal and swift parrot requirements). Notwithstanding this limitation, the FT summaries offer a good basis for comparing scenarios.
Subsequent improvements reported by Riddell and McLarin (2003) involve minimum area of harvest ‘blocks’ as small as 10 ha and useful heuristic simulations to grapple with the effects of coupe dispersal and other reductions in areas for environmental purposes. The Forestry Tasmania (2012) response to the PEFC complaint identifies an average reduction for the aggregate area available for wood production (other than Special Timbers) of 22%, after excluding native forest outside the permitted wood production areas.

Burgman and Robinson (2012) reviewed the overall approach to inventory and planning data as part of the independent verification process under the intergovernmental agreement. They found that ‘inventory and measurement practices conform to best practice’ and that the ‘forest growth models and the’ (simulation) ‘system in which they are embedded are commensurate with the models and systems used by other forestry jurisdictions’.

Burgman and Robinson (2012) also reviewed the sustainable yield system and found them to be ‘reasonably accurate’ with respect to sawlogs and pulpwood, conditional on two improvements in future calculations of sustainable yield. One was the use of a higher headroom factor than the 10% currently being used. This would not necessarily make the estimates more accurate but it would provide greater protection against risk if the proponent was risk averse, a point to which I shall return later. The second concerned the appropriateness of the volume and area discounts. This qualification just reflected their inability to personally verify these matters because of time limitations.

Much of the Burgman and Robinson (2012) review was devoted to a painstaking detailed analysis of, and corrections of biases in, the volumes of the principal products on individual areas involved in the proposed changes under consideration by the intergovernmental review. Many of these represent important improvements in the calculation of sustained yield. However, some critical aspects of risk in relation to wildfires and in relation to plantations warrant more detailed examination and that takes us back to the distinction between headroom, safety margin and discounts.
3.6 Headroom Factors and Discounts

To quote from the Burgman and Robinson (2012) report:

The within-coupe class area is discounted by class-specific area factors (ARE) and the projected timber is discounted by IA/FC-specific reconciliation ratios (VRE) as noted above. Hence, projected timber yields are discounted to reflect otherwise unforeseen harvesting constraints such as the presence of class-4 streams and slope, as well as otherwise unforeseen volume reductions such as internal rot, fire, and insect damage.

Headroom refers to a percentage of the predicted harvestable resource that is excluded in the scenario as a buffer against unexpected changes in future conditions, spatial constraints, and the like. The 6/6 scenarios used 10% headroom. The scenarios documented in this report use varying amounts. Area reconciliation (ARE) discounts are usually about 20%, based on historical application of the Code. This area is taken into account in modelling before headroom factors are applied. Thus, if a 30% headroom is applied, then the output indicates that approximately half (56%) of the areas potentially available for harvesting can actually be harvested. Below, we evaluate headroom levels and their applicability to different scenarios.

The first paragraph of the quote deals with volume discounts that, like area discounts, are or should be made prior to the application of any headroom. But here, there is a troublesome ambiguous reference to internal rot, fire and insect damage - fire of unspecified character. Are those volume reductions solely catering for internal defects from rot, fire and insect damage? Do they cater for fire damage of all kinds - small fires, large major fires, or both? The word ‘unforeseen’ is also ambiguous because it may imply a failure or an inability to predict. There is a lack of clarity here that is disturbing and that is also reflected in the background papers by Whiteley (1999) and Riddell and McLarin (2003).

The second paragraph seems to be based on a minor misinterpretation of Forestry Tasmania practice, because the Forestry Tasmania headroom factor is applied as a volume, not an area, discount. The number cited may therefore inflate the aggregate equivalent reduction in area. Based on a very crude approximation using the Von Mantel sustained yield formula for a ‘normal’ forest (see Davis and Johnston, 1987), a reduction in the aggregate area of a large forest estate results in up to double that reduction in sustainable yield, while a reduction in volume only results in up to an equal proportionate reduction in sustainable yield. Thus a reduction of 20% in area plus a reduction of 30% in volume results in a 42% reduction in sustainable yield. This seemingly arcane academic point has important practical implications.

Some sources of area discounts, such as stream buffers, are quite specific and can be measured relatively precisely. Stamm (2011a, 2011b, 2012) undertook a detailed assessment of area and other discounts of various kinds. He found that there has been little change in the average area discount across all Districts (circa 24 %) since 2007, notwithstanding some increases and some decreases in individual Districts over that period.

However, some of the area discounts under the Code of Forest Practice proposed since 2007 are of an ‘umbrella’ character that reflects difficulties in precisely...
specifying boundaries in the implicit tradeoffs between the commercial management for wood production and the largely non-commercial supply of environmental services.

Table 1 shows some personal estimates of the volumes of various products and their prices at stump and the resulting opportunity costs expressed both in annual value and present value, the latter based on a social rate of discount of 5% applied over a planning horizon of 90 years. Needless to say, applying either of the Auditor-General's recommended discount rates would increase the present value greatly over that shown.

Table 1. Estimated opportunity costs of an additional 1% reduction in sustainable yield

<table>
<thead>
<tr>
<th>Product</th>
<th>Approx. volume sold ('000 m³/y)</th>
<th>Approx. stumpage ($/m³)</th>
<th>Approx. total revenue ('000 $/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Quality Sawlogs</td>
<td>238</td>
<td>58</td>
<td>13,800</td>
</tr>
<tr>
<td>Other Sawlogs</td>
<td>67</td>
<td>42</td>
<td>2,814</td>
</tr>
<tr>
<td>Peeler Logs</td>
<td>216</td>
<td>35</td>
<td>7,560</td>
</tr>
<tr>
<td>Native Forest Pulplogs</td>
<td>2,004</td>
<td>19</td>
<td>38,076</td>
</tr>
<tr>
<td>Totals</td>
<td>2,525</td>
<td>62,254</td>
<td></td>
</tr>
</tbody>
</table>

Average opportunity cost $24.66/ m³
Sustained yield 330,000 m³/y

Opportunity cost of an additional 1% reduction in sustainable yield

Annual cost $81,362/y
Present value @ 5% discount rate $1,627,233

The actual values of volumes sold and stumpage are not available publicly. Hence the values in Table 1 are personal estimates drawing on the 2009-10 Annual Report values for forest sales and are only very rough approximations. Furthermore, they assume that the particular reduction in yield stems from a reduction corresponding to the overall average growth in volume. Nevertheless, they illustrate the order of magnitude of the average opportunity cost over the Forestry Tasmania native forest estate of an additional 1% discount relating to an environmental tradeoff.

Rounding the values off, each 1% per unit of sustainable yield reduced constitutes an average opportunity cost of about $80,000 per year or a present value, when discounted at 5% over a 90-year period, of about $1.6 million. Those changes in sustainable yield that derive from area discounts could, using the earlier argument based on Von Mantel's formula, be only half those amounts per additional 1% in area reserved, but they are still substantial.

The recent proposals for changes to the Forest Practices Code reflect research and expert advice and merit attention in the future Code. However, alternative solutions might achieve the same outcome at a lower opportunity cost. For example, does the particular provision need to apply over the entire 90-year period?
period? Time limited (5-year) provisions like adjacency constraints have a very much lower impact on sustainable yield, if correctly applied. Does the provision need to apply to the entire estate or could it target relevant portions separately, reducing the overall impact? Are there alternative incentives or penalties that can achieve the same outcome at a lower opportunity cost? These issues may well have been considered but it would be helpful if they were canvassed in reporting the approach taken.

The second paragraph also indicates that the headroom is a buffer against ‘unexpected changes in future conditions, spatial constraints and the like.’ While unexpected changes and spatial constraints are elaborated later, the issue of major wildfire is left dangling. Furthermore, while unexpected changes constitute a risk that might validly be taken into account via a headroom, spatial constraints are predictable in their impact, admittedly requiring considerable work, and might better measured by a preliminary estimate of the discount, subject to confirmation through further research.

In any event, an overall headroom factor of (say) 20% in volume to cover seemingly unpredictable risks such as wildfire can be inappropriate. For example, if a major wildfire burns young regrowth of a fire-sensitive species, the impact is profound because those years of wood production are probably lost entirely. If the regrowth of a fire-tolerant species, the impact will be much less although the quality of the final sawlogs may be affected somewhat. If a wildfire burns a ‘Mature Eucalypt’ forest of predominantly fire-tolerant species, there may be changes in competition favoring the fire-tolerant element but quality, at least among remaining near-mature and mature stems, may be little affected.

The Forestry Tasmania (2012a: Attachment A) histogram showing the distribution of plantation, young regenerating forest, regrowth forest of various ages, and of mature forest by area for 2006 and 2095 is shown in Figure 1.

![Figure 1. Distribution of areas of forest growth stages within State forest in 2006 and 2095](image-url)
For the sake of this argument, suppose that much of the regrowth eucalypt 61-110 years old is predominantly of fire-sensitive species and therefore suffers considerable loss in quality, although most fire-killed material could be harvested and used commercially. Again, for the sake of argument suppose half of that area (i.e. 90,000 ha) is not fire-sensitive and can therefore join the fire-tolerant Mature Eucalypts to total about 620,000 ha. The other half joins the fire sensitive younger stages totaling about 400,000 ha.

While the former group may suffer some diminution on volume or quality due to wildfire, I would expect that the change would be slight, calling for a safety margin of perhaps 2% on the fire-tolerant component, based on my perception of the Tasmanian forestry history overall. A 10% reduction across all growth stages would therefore be more appropriately implemented by applying a safety margin of volume of about 20.4% on to the younger growth stages. That uneven distribution has different planning implications than the overall 10% safety margin. Given the very large buffer provided by the Mature Eucalypt forest, the overall change in sustainable yield would probably not be very marked but the timings of the transitions to greater reliance on regrowth and plantations would probably be affected markedly.

It seems that headroom factors have generally been

1. somewhat ill-defined, not clearly separating potentially evidence-based discounts from safety margins for the seemingly unpredictable risks,
2. applied uniformly across native forest and plantations, notwithstanding the differences between and within those categories, and
3. lacking in a sufficiently detailed rationale and/or analysis to justify the magnitude of the safety margin purporting to cover seemingly unpredictable risks.

All headroom factors advocated for Forestry Tasmania to date are subjective judgments about the collective impact of seemingly unpredictable risks but are confounded to some extent by the inclusion of some discounts. The risks deserve to be tested properly in a stochastic analysis that gives more considered weight to the impacts of major wildfire (see Ferguson, 2009, 2011) or any other major risk in that category.

3.7 Risk

The Australian Forestry Standard documentation contains references to the need to take account of risks of all kinds, including the Australian Forestry Standard 4.4.2 Guide to Verification ‘that planning of forest operations takes addresses (sic) identified risks to productive capacity.’ through Indicators such as ‘Forest management plans or equivalent instruments, including strategies (rationale) for annual harvest rates’.

The Forest Practices Authority oversees the mitigation of environmental risks using the Code of Forest Practice (Forest Practices Board, 2000) and associated regulations and systems. To the extent that these provisions restrict the planning of wood harvests, they are reflected by a legion of constraints in the planning process.
– these include stream buffers, wildlife corridors, local reserves to protect rare or endangered species or landscape aesthetics, adjacency constraints to avoid prescribed burning near newly regenerated stands and the like. The evidence from the reviews by Brack and Vanclay (2011) and by Burgman and Robinson (2012) is that, with a few minor exceptions, these provisions meet best practice.

All calculations of sustainable yield are subject to errors, some of which reflect the fact that Forestry Tasmania cannot measure every tree in the forest and so use a sample of plots on which the trees are measured to estimate the standing volume and other characteristics. Forestry Tasmania also periodically re-measures some of those plots to estimate growth (Whiteley, 1999; Riddell and McLarin, 2003). The accuracy of any calculations of sustainable yield rest on the impact of these and other sources of error and can be assessed using two criteria - bias and precision.

Bias refers to the difference between the estimate and the true value. As Brack and Vanclay (2011) point out, the ultimate goal is to eliminate bias as far as possible. Various corrections were implemented in recent revisions of the planning process to achieve this (Riddell and McLarin, 2003), based on a comparison of actual and predicted yields where suitable data were available. Burgman and Robinson (2012) checked and/or applied similar corrections for the major individual areas involved in the intergovernmental agreement in a thorough and appropriate manner.

Precision reflects the fact that there are inherent sources of random variation in the estimates, even after any bias has apparently been removed. This partly is a result of sampling, instead of complete enumeration, of the trees in the forest. Those errors generally follow a bell-shaped probability distribution and hence precision can be gauged by the variance or the standard error of that distribution. Estimates of the precision attached to the 2007 estimates of total sawlog volume were calculated and found by Brack and Vanclay (2011) to be ‘small enough to allow useful estimates’ of harvest yields and therefore, ultimately, for calculating sustainable yield.

Once biases have been removed or substantially eliminated, precision can provide a useful measure of the risk attached to setting a particular target for overall harvest yield in a particular period. For example, one could use the information to calculate that there is a one in three chance (or a probability of .33) of being able to supply 'X' amount of wood or, conversely, a two in three chance of failing to be able to supply it. This is the direction in which harvest scheduling is moving – towards stochastic models in forest planning.

Burgman and Robinson (2012) acknowledged the desirability of developing a stochastic analysis of the present issues, so that risk could be better explored. They point out that much of the data developed in the course of their work could be used for that purpose, but would require more time and resources than were available to them.

In the longer term, stochastic planning models that allow risk to be quantified and expressed in probabilities will probably rest on the use of global optimization techniques based on a genetic algorithm (e.g. Chikumbo and Nicholas, 2009 and Chikumbo, 2011), rather than linear programming. This partly reflects the ever-growing capability of faster computers to handle even larger problems involving greater attention to detail.
But these are matters for continuing improvement. What can be said of the current situation as to the recognition of risks that lie outside the domain of the current inventory, planning and scheduling system? Area and volume discounts are certainly relevant and have already been canvassed but what of the safety margin.

Safety margins are essentially risk premiums or insurance and are or should be the certainty equivalent value of the risk involved. Mostly, an *ad hoc* headroom value is used to embrace those (often ill-defined) discounts that were not measured, together with a safety margin of unspecified magnitude. Because the discounts are generally not described precisely, and the safety margin is not explicit, comparisons of the headroom factors advocated by different analysts are difficult.

A safety margin poses a dilemma for a commercial State-owned entity like Forestry Tasmania. The Auditor-General of Tasmania (2011) has indicated that a risk-free rate of discount should be used in valuation of Forestry Tasmania. This follows a well-established economic principle that if the Forestry Tasmania contribution to State investment is small, a public entity should be risk-neutral in discounting. Arguably then, risk-neutrality might also be appropriate to the safety margin, making it effectively zero. However, the Forestry Tasmania Board and senior executives might have a different view, because of they may be averse to the risk involved to their commercial or management reputations, and might therefore apply a safety margin on that account. These are matters for the Auditor-General and Forestry Tasmania to resolve and highlight the need for a much closer analysis of the safety margin and more precise use of discounts.

In reviewing whether and at what level a safety margin should be applied, consideration also needs to be given to the 5-yearly periodic review of the calculation of sustainable yield. This enables Forestry Tasmania to adapt to past changes that were unpredictable. The periodic review also enables discounts to be revised in the light of additional evidence and research. Discounts and safety margins should not be viewed as set in concrete – they also merit informed review. Seemingly unpredictable risks such as wildfires, on the other hand, cannot be neglected in future analyses of sustainable yield simply because they did not occur in previous 5-year period.

In terms of major seemingly unpredictable risks, at least two potential ‘elephants in the room’ loom large. One relates to wildfires and the other to market acceptability of eucalypt plantation produce. There may be other seemingly unpredictable risks but these will serve to illustrate some of the issues involved.

3.8 Wildfires

The utilization of native forest produce from stands of regrowth and remnant old growth extends over a considerable period in Tasmania, providing considerable experience for the native forest industry as to the costs involved, the market acceptance of the various qualities of the ultimate produce, and the prices needed to support viable operations. With the exception of major wildfire, most of the impacts of pests and diseases, small fires, coupe dispersal, creation of informal reserves and environmental constraints are either reflected in the inventory and planning data or can be simulated and estimated via geographic information systems. As Burgman and Robertson (2011) note, small fires are of little long-term consequence, because the salvage operations can, for sawlogs and peelers, be
substituted for currently scheduled coupes and the longer term harvest pattern rescheduled.

Catastrophic fires are more problematic because of the extent and volumes involved and Burgman and Roberson (2012) note the potential of major wildfires on the calculation of sustainable yield. Some research has been done on the mean interval between major fires in Tasmania but is handicapped by the limitations of the historic data and the cost of the alternative methods of fire dating (Marsden-Smedley et al., 2012). Wildfire, although seemingly unpredictable, can be predicted stochastically by constructing simulation models that embody the probabilities of occurrence of a fire and the probabilities that, once ignited, it will reach a certain size (see Ferguson, 2009, 2011). For the Forestry Tasmania estate, due recognition would have to be given to the marked regional differences involved in climate, fragmentation, and forest types. Modeling could also be extended to plantations although the distributions involved would differ.

3.9 Plantations

The Forestry Tasmania strategy, dating back at least to the 1997 RFA report, has been to effect a transition to reduce progressively the harvesting of old growth forest, replacing it by harvest from regrowth forest and plantations. However, experience in processing of the produce of eucalypt plantations was and, in some cases, still is quite limited. This means that there is a substantial potential risk to the processors of eucalypt plantation timber pertaining to the properties and consequent costs and market acceptability of the produce.

Earlier estimates by Forestry Tasmania (2007) were predicated on the assumption that, given early pruning and moderate thinning, *E. nitens* and possibly *E. globulus* would provide sawlogs of suitable quality to yield timber acceptable in the market place in competition with that from native forest and plantation. The experience of the F.E.A. sawmill, while seemingly successful in overcoming some of the seasoning problems, suggests (Poyry, 2011) that the product had not met market expectations at a viable price. That experience, however, involved the use of younger unpruned logs. Nevertheless, as Brack and Vanclay (2011) pointed out, ‘while the models may reliably predict the total volume of timber, “pushing” the system to ensure all the veneer material is produced may impact on the amount of sawlog produced’.

Burgman and Robinson (2012: Appendix 2) canvassed these issues at length and concluded:

> The question of how much risk is acceptable, who should bear the risk, and what are efficient mechanisms for sharing the risk, are critical ones that the participants of the process must resolve if the eucalyptus plantations are to be considered among the sources of product.

The Forest Industries Association of Tasmania (FIAT, 2011) expressed some concerns about the acceptability of plantation-grown *E. nitens* but more recently (FIAT, 2012) has recognized that plantation-grown pruned logs can meet the existing definition of ‘High Quality Sawlog’.

Only time and experience will resolve the issues of the choice of regimes and ultimate market acceptability. Harwood (cited in Forestry Tasmania, 2012a) argues as follows:
Nitens has some processing problems, but these can be minimised with appropriate processing techniques. The species was an important native forest timber in Victoria, before most of this native forest base was reserved from harvesting. A new plantation resource will not be suitable for all sectors of the native forest processing industry, regardless of the species. In establishing a plantation sawlog resource there must be a "leap of faith" just as there was with radiata pine, and it is reasonable to expect processors to have to change and adapt to the new resource to some degree, during the 25+ year growing cycle of the plantations.

At this point in time, considerable uncertainty and risk clearly attaches to the outcomes and another ten to perhaps twenty years will be needed before such fundamental issues are resolved. Forestry Tasmania (2011b) does not seem to have applied a headroom factor to plantations. Burgman and Robinson (2012) used 10% in their calculations but signaled concerns relating to the uncertainties attached to *E. nitens* plantations. In my view, 30% may be needed for the next 20 years, but could reduce to 10% beyond that time because there is a reasonable likelihood that many of these issues will be resolved. Alternatively, as indicated in the next section, legislative changes might enable the use of a safety margin of 10% or less for plantations. As indicated earlier, a stochastic analysis based on the views of processing experts would be useful in translating the somewhat arbitrary estimates of headroom into a more appropriate treatment of impact of the risks involved, most likely aiming at prescribing that there be (say) a 90% probability of being able to supply ‘Y’ annual volume over a particular period.

3.10 Legislative Provision of a Minimum Harvest

Section 22AA of the *Forestry Act 1920* states:

1. Each year, from multiple use forest land, the corporation must make available for the veneer and sawmilling industries a minimum aggregate quantity of eucalypt veneer logs and eucalypt sawlogs that meet the prescribed specifications.

2. In subsection (1), “minimum aggregate quantity” means -
 (a) 300,000 cubic metres; or
 (b) if another quantity is prescribed - the prescribed quantity.

The intention of the Act was to protect the processing industry by ensuring a stable continuing minimum supply of eucalypt sawlogs and veneer-slicing logs to local industry. While not strictly a risk in itself, this has a profound impact on the entire planning system because, with progressively increasing resource withdrawals over time, it has become a major, if not the major, binding constraint. It has tended to confound the sustainable yield principle of setting a maximum level for the wood that might be harvested annually and, more importantly, it has largely eliminated the flexibility that might be appropriate in effecting the transition to regrowth forest and plantation sources. The latter point requires elaboration.

Given that the scheduling is essentially being driven by the need to make available at least 300,000 m3/y of high quality sawlogs, this imposes a set of constraints on the transition to regrowth forest and plantations. The areas
available and prescribed rotation lengths limit the contribution of regrowth forests, so these resources are almost certainly taken up to the maximum. The plantation resource must then take up the slack if a seamless transition is to be effected.

In some ways, setting a minimum level for Forestry Tasmania to make available runs counter to the notion of sustainable yield because of the constraint it imposes. Under the Australian Forestry Standard, in the absence of such legislation, the scheduling would aim to identify the maximum annual harvest with due regard to the risks that would leave the estate in a better condition at the end of 90 years. As noted earlier, the Standard allows some flexibility to accommodate market fluctuations – there is no requirement that the prescribed harvest yield be met each and every year.

Is this legislative requirement on Forestry Tasmania to make available 300,000 m\(^3\)/y realistic? The evidence of past harvest level is shown in Figure 2 (Forestry Tasmania 2012a:Attachment A). With the exception of the boom years in 2002-06, the actual harvest has been lower. That exception would not be in breach of the Australian Forestry Standard, given (1) that the Standard requires that legislative provisions be met ‘to make available’ 300,000 m\(^3\)/y, (2) the Standard’s flexibility to accommodate market fluctuations, (3) the predominance of levels lower than 300,000 m\(^3\)/y, and (4) the evidence of Figure 1 as to the likely condition of the estate in 2096 being somewhat improved on that in 2006.

Figure 2. Actual high quality eucalypt sawlog supply from State forest

The legislative requirement was set to provide an assurance to enable industry investment to be maintained in the light of major reductions in the sawlog supply from the 1970s through to the 1991 Forests and Forest Industry Strategy (Walker and Felton 2007). This minimum supply objective was maintained through the 1997 Regional Forest Agreement and 2005 Tasmanian Community Forest Agreement, by providing funding for eucalypt plantations to make up for the sustainable yield foregone by transferring large areas of native forest into reserves.

However, for future yield regulation, it would be far preferable if the legislation were amended to allow the setting of the sustainable yield to relate to the maximum volume to be harvested as described above, for the following reasons.
The seamless transition of the sustainable yield calculations to place greater reliance on regrowth forest and plantation in meeting the 300,000 m³/y minimum target is presumably predicated on the assumption that such a transition ensures stability of industry activity and dependent employment. While that may be valid for both the existing native forest sawn timber industry and the relatively new veneer-peeling plant, it is unlikely to be achievable for new processors of sawn timber from eucalypt plantations. Given the differences in the species and/or their properties relative to the native forest produce, new sawing and drying technologies will be needed, often requiring staff newly trained in those technologies. New harvesting machinery may be required. New marketing initiatives will be required to gain market acceptance of new and different products. In all likelihood, new entrepreneurs may be involved since a total re-assessment of finances and risks will be required.

Thus, while it is appropriate that governments should be concerned about the transitional employment, that concern would be much better placed in retraining and other assistance for workers leaving the native forest industry, together with accelerated research and training of staff for new processors as the new technologies become operational, than in assuming a seamless transition. Indeed, the calculation of sustainable yield might benefit greatly by dropping the minimum target, exploring the sustainable yield as indicated earlier, and testing a transition period of 10 to 20 years in the startup of all or some of the new processing base on the plantation resource. Such a transition gap does imply a gap in dependent employment but major change seems inevitable even with a seamless transition in volume because of the change in the nature of the employment in the new processing. Furthermore, the additional time would enable longer rotation lengths, potentially larger log sizes and different, hopefully more amenable, properties for both veneer and sawn timber. These observations are, of course, hypotheses and need scrutiny by industry experts.

3.11 Conclusions

1. With some exceptions, the underlying Forestry Tasmania (2007) inventory and planning data reflected the current and future state of the forest, markets and dependent industries appropriately at that time. Most of the exceptions relate to improvements recommended in the course of other reviews and some, relating to a stochastic analysis, have been elaborated further in this review.

2. The Forestry Tasmania (2007) process of calculating sustainable yield meets best practice standards at that time but merits improvement in the course of the 2012 review of the Regional Forest Agreement in order to better address the Australian Forestry Standard principles underlying sustainable yield and the calculation of it.

In particular, the constraints imposed by current legislation to make available a prescribed minimum harvest of 300,000 m³/y of high quality sawlogs need to be amended to enable the Australian Forestry Standard principles underlying the calculation of sustainable yield to be properly implemented. Also, the implied rigidity of a steady annual harvest in the seamless transition of volume involving greater reliance on supply from
Regrowth forest and plantations needs to be reconsidered, not least in relation to the uncertainty and risk attached to the transition to greater use of eucalypt plantation sawlogs and peeler logs.

3. Forestry Tasmania regulated the harvest yield in a manner consistent with the requirements of the Australian Forestry Standard and the 2007 calculation of sustainable yield.

4. THE ALLEGATION OF UNSUSTAINABILITY

The Premier of Tasmania (Giddings, 2012) has released the following statement in relation to the report by West (2012) that contains references to alleged unsustainability:

The Premier, Lara Giddings, said the paper released by Professor Jonathan West today reflected his personal view of the challenges confronting the forest industry.

Ms Giddings said the paper was not part of the terms of reference of the Independent Verification Group and as such, was not be part of negotiations between signatories to the statement of principles.

"The paper represents Professor West's personal views and was used as the basis for the presentation he made to Cabinet this week," Ms Giddings said.

"This report was not suppressed by the government, it was always Professor West's work to release.

"Like the five reports prepared by the IVG and commissioned by the State and Federal Government, the paper prepared by Jonathan West deals with matters that are contestable.

"That is not to say that Professor West's views do not have merit, but it is important that we do not prescribe one man's view above any others.

"It is imperative that the signatories to the statement of principles are given the space to consider the range of differing views in this debate in order to try to reach a negotiated settlement.

"Reaching a settlement will not be easy but given the history of unresolved forest conflict in Tasmania, I firmly believe that an agreed settlement gives us the best possible chance of finding a lasting solution to the forest conflict that has divided our state for too long."

My charter in examining the West assertions is to see whether they accurately reflected the findings of that Group and other relevant recent reports relating to Forestry Tasmania and so to ascertain whether Forestry Tasmania has breached the Australian Forestry Standard requirements concerning the calculation and regulation of sustainable yield.

The West (2012) report states that the ‘goal has been to provide a body of independently validated information as a sound foundation for a durable agreement to end the decades-long conflict that has been so damaging to the fabric of Tasmania’s society and economy.’- an admirable goal.

Later (West, 2012: p 3) the report states:
It is vital to understand that the wellbeing of each element of the native-forestry industry depends on the health of the whole. Unless each major component of the forest is able to be marketed profitably—including residue in the form of woodchips or pulp, smaller logs in the form of peeler billets, and larger, higher-quality sawlogs—it becomes uneconomic to harvest our forests at all. Such an outcome threatens to make the native-forest industry in its entirety unviable, and especially the government-owned entity that manages the forests and harvesting operations, even if individual components continued to be profitable.

What is troubling about this statement is not the sentiment, but the fact that it seems to refer solely to native forest, with no mention of plantations.

Further on, in discussing the Independent Verification Group methodology, the report states:

To avoid such a future, Tasmania needs to ground any resolution to the forest dispute on two vital principles: first, the industry must be restored to a sustainable-yield basis, and second, all major parties to the conflict must understand and accept any compromise solution. Without sustainability, the industry will ultimately exhaust its resource—and our analysis reveals the potential for this to occur in some segments alarmingly soon.

The inference of the first part of this statement is that the industry is not on a sustainable yield basis. I am unable to see how the West (2012) report reaches this conclusion in terms of the Australian Forestry Standard definition and provisions for calculating sustainable yield.

These statements lead to the key finding by West that:

1. Tasmania's native forests (not including plantations) have been and continue to be harvested substantially above long-term sustainable yield, in respect of the key product segments to which they provide resources.

I am unable to see how the West (2012) report can logically exclude plantations, given the Forestry Tasmania definition of the Defined Forest Area, not to mention the long history that explicitly incorporates plantations into the transition to the greater use of regrowth forest and plantations in the place of old growth harvesting. This problem recurs in the following excerpt (West, 2012:p4).

For high-quality sawlogs, Forestry Tasmania is committed by current legislation to provide a minimum of 300,000 cubic metres of resource each year, and until the exit of Gunns last year had signed contracts to supply an estimated 320,000 cubic metres.

Our finding—employing only Forestry Tasmania data with estimation models run by Forestry Tasmania personnel on Forestry Tasmania computers, and peer reviewed by eminent independent forestry experts, is that with appropriate allowances for non-retrievable timber due to mandatory forest-practices regulation (so-called "headroom"), the sustainable annual yield of high-quality sawlogs from native forest is between 117,600 cubic metres (allowing for a non-retrieval rate of 40%) and 156,800 cubic metres (allowing for a 20% non-retrieval rate). Put simply, Forestry Tasmania had been committed to harvesting sawlogs from
native forest (not including plantations) at about double sustainable yield.

For peeler billets, Forestry Tasmania is committed by contract to provide Ta Ann with 265,000 cubic metres of resource each year until 2022, and it is our understanding that Ta Ann holds a contract option for this supply for a further 5 years beyond 2022. Our finding is that the sustainable yield of peeler billets from native forest is between 76,200 cubic metres (at the 40% headroom level) and 101,600 cubic metres (at the lesser 20% headroom level). This implies that Forestry Tasmania has also been harvesting peeler billets from native forest (again, not including plantations) at about double sustainable yield.

The first paragraph is inaccurate in that the legislation refers to making available a supply of 300,000 m³/y of ‘eucalypt veneer logs and eucalypt sawlogs that meet the prescribed specifications’. The contractual commitments are not in breach of that legislation, as seems to be implied.

The second paragraph, leaving aside the ambiguity of the collective ‘our finding’, asserts the Forestry Tasmania has been committed to harvesting sawlogs at about double the ‘sustainable yield from native forest.’ This assertion is based on the Burgman and Robinson (2012: Table 18) estimates for the harvest yields from the native forest alone. Clearly, this is NOT the sustainable yield applicable under the Australian Forestry Standard because it strings out the harvest of old-growth native forest over a 100 year planning horizon, whereas the Forestry Tasmania’s explicit strategy was to make as rapid a transition from predominantly old-growth harvest of native forest to regrowth and plantation harvest as was possible. West (2012) also ignored the Burgman and Robinson (2012:p72) caveat immediately following Table 18 that ‘FT was required to adopt a strategy of sustained (sic) yield that relied on both native forests and plantation’. The values of ‘sustainable yield’ cited by West (2012) therefore have no relevance to the assertion. The actual average annual harvest of high quality eucalypt sawlogs (288,000 m³/y since 1997) was, in the long run, substantially less than the sustainable yield under the Australian Forestry Standard, remembering that the sustainable yield (300,000 m³/y) was effectively stipulated by legislation requiring Forestry Tasmania to ‘make available’ that amount under a strategy involving a progressive transition to greater reliance on regrowth and plantation.

The particular example used by West to support the allegation of unsustainability is one based on the application of ‘non-declining yield’ and excludes plantations. Non-declining yield is a particular construct quite widely applied in forest management and essentially uses special constraints to ensure that the harvest yield of the next 10-year planning period cannot be less than that of the previous period. Notwithstanding its widespread use, I have major reservations about this degree of rigidity, well exemplified by the Forestry Tasmania situation had plantations been included in the optimization. In this case, it would automatically result in a seamless transition in harvest yields, whereas I have earlier argued that the situation would benefit from a gap in the transition and a re-evaluation of the subsequent harvest yield. Provided the two main underlying principles of sustainable yield dealing with long term continuity and a better condition at the end of the planning horizon are met, applying a fixed harvest yield regime through non-declining yield seems counter-productive to intelligent analysis of harvest yields in long term sustainable
In interpreting West's (2012) comments, it is important to note the requirements for Tasmanian Forests Agreement Verification stemming from the Tasmanian Forests Intergovernmental Agreement. A Signatories Scenario Workshop in May, 2011 (Forestry Tasmania, 2011b: Appendices 1 and 2) further elaborated these requirements. Burgman and Robinson (2012) addressed the requirements in providing piecemeal corrections and wood supply estimates to facilitate the tradeoffs involved between the Governments and the Environmental Non-Governmental Organisations. Regrettably, from an Australian Forestry Standard viewpoint, they used the term ‘sustainable yield’ widely to apply to estimates of harvest yields across various resource Scenarios that sometimes excluded plantations, thereby contributing to the subsequent confusion. Scenarios 3, 4, 6 and 8 included plantations and are therefore consistent with the Australian Forestry Standard. However, they relate to prospective changes under negotiation and do not address the calculations for the 2007 Sustainable Yield Review of the Regional Forest Agreement that form the current basis of harvest regulation.

The third paragraph repeats the omission of plantations from the discussion of sustainable yield, notwithstanding very clear statements both historically and presently, that the basis was to ensure a transition to greater reliance on wood from regrowth forest AND plantations. However, the contracts also include provisions for Forestry Tasmania to source peeler billets from private property, so there is yet another source of supply to be considered before making judgments about these contracts. West (2012) ignores both plantation and private forest sources of supply.

The section of the West (2012) report dealing with the first key finding cited above concludes with two observations, the first being that:

It is important to recognise that sustainable yield is the most fundamental principle of sound forestry management. It is the Hippocratic Oath equivalent: the forests must not be harvested at a rate greater than that at which they regrow.

The first part is another point on which I can agree with West, although I would add the caveat that sustainable yield entails the intelligent analysis and planning of present and desired future forest structures, not a pursuit of a steady state that cannot be implemented in practice.

The second observation is that:

In summary, for Forestry Tasmania to commit to harvest Tasmania’s native forests at levels double that of long-term sustainable yield would appear to expose the industry that exists today in Tasmania to excessive risk of resource depletion and market rejection, unless plantations prove in future able to provide large quantities of sawlogs and peeler billets, which at this point appears highly uncertain and to contradict a growing body of evidence and belief in the industry.

The first part of this statement is incorrect because it is interpreting the Forestry Tasmania sustainable yield to exclude plantations. The reference to plantations in the second part is therefore curious, because it indicates that West was not totally unaware of their importance in the calculation of sustainable yield. However, I agree with him that the supply of eucalypt plantation peelers and
sawlogs must be better resolved in revising the calculations of sustainable yields for the Regional Forest Agreement review. West’s (2012:p6) awareness of the future role of plantations is spelt out even more forcefully in the second section of his key findings, although the area of eucalypt plantations cited (55,960 ha) is incorrect and should refer to the 36,674 ha of eucalypt plantations that are under Forestry Tasmania’s management and form part of its Defined Forest Area.

Conceptually and arithmetically, however, the West/Burgman/Robinson estimates of sustainable yield that exclude plantations are not and cannot be consistent with the definition and calculation of sustainable yield under the Australian Forestry Standard.

The calculated yield under constrained optimization rests on the principles of establishing a harvest that can be sustained over a long period, albeit recognizing market fluctuations, under a legion of constraints AND that leaves the defined forest area in better condition at the end of the planning period. In the Australian Forestry Standard process, the value so calculated is therefore dependent on the contributions that plantations make and/or the final condition. Exclude or change either, and the value for overall sustainable yield will change, as will any other related sub-component (e.g. a native forest Region) thereof.

The failure to recognize the distinction between the requirements of Tasmanian Forests Agreement Verification for wood supply on ‘sustainable forest management basis’ and the Australian Forestry Standard definition in their use of the term ‘sustainable yield’, based on a differing resource base, is at the heart of the confusion arising from West’s (2012) allegations of unsustainability.

Values from optimization scenarios that specifically exclude the role of plantations have no relevance to Forestry Tasmania’s sustainable yield as defined in the Australian Forestry Standard.

4.1 Conclusions

In terms of the Australian Forestry Standard, I am unable to determine a rational basis in the Independent Verification Group reports, or related documentation, for the West (2012) assertions about the unsustainability of Forestry Tasmania sustainable yield calculations or practices. They do not appear to be founded on the facts pertaining to the Australian Forestry Standard and the evaluations of the Forestry Tasmania process of calculating the sustainable yield and regulating the annual harvest. From an Australian Forestry Standard viewpoint, they reflect an unfortunate confusion in the use of the term ‘sustainable yield’.
5. COMPLAINT FROM MR. G. LAW

NCSI also received a complaint from Mr. G. Law regarding the "Unsustainable Logging of State Forest Managed By Forestry Tasmania’ dated May 2012 hereafter referred to as Law (2012). Subsequent to writing the first draft of my report, Forestry Tasmania (2012b) supplied a response that identifies various errors in the Law complaint. I do not propose to labor these as the complaint was written in good faith and the essential points can be more briefly and clearly summarized as follows.

In summary, Law (2012) alleges that:

1. Forestry Tasmania has been cutting its forests at well above the rates that can be sustained in the long term and in so doing is diminishing the productive capacity of Forestry Tasmania’s native forest in breach of the Australian Forestry Standard Criterion 4, Sections 4.1.1 and 4.4.2 Criterion 3, Sections 3.1 and 3.6 (see also PEFC 5.3, 5.3.1 and 5.3.6).

2. In addition, Forestry Tasmania has signed contracts (Ta Ann in particular) that cannot be met sustainably because the eucalypt plantation resource is not capable of supplying sufficient sawlogs and peeler logs.

Each of these allegations is reviewed in turn.

5.1 Unsustainable Cutting

Law (2012) accurately reports a number of the Australian Forestry Standard and other provisions but has failed to grasp the critical points that the calculations and implementation of sustainability refer to the Defined Forest Area, which includes plantations, and that some flexibility is permissible under the Australian Forestry Standard to accommodate market fluctuations.

5.1 For reasons detailed previously, the allegation of unsustainable cutting has no basis in fact under the Australian Forestry Standard or PEFC provisions. Mr. Law bases this allegation on a misconception of the provisions of the Standard.

5.2 Signed Contracts

In an earlier section (3.10) of the report, I have acknowledged that there are serious concerns over the capacity of the E.nitens plantation resource to supply sufficient of the earlier predicted volumes of sawlogs and peeler logs of acceptable quality to meet the seamless transition in sustainable yield as the native forest supply reduces markedly around 2031. I have recommended that policy changes to the seamless transition are desirable. These would alleviate the sustainable yield nexus but not necessarily the contractual issues. However, the contracts between Forestry Tasmania and Ta Ann require Forestry Tasmania to source peeler billets beyond State forests, including from plantations and/or from private forests (Forestry Tasmania, 2012b), which expands the scope of the supply review that is needed. Law's concerns may prove exaggerated but only time will tell.
5.2 Should Mr. Law's prognostications relating to peeler contracts prove well founded during the 2012 RFA review (or any later reviews), it will be incumbent on Forestry Tasmania to consider its contractual liabilities and promptly renegotiate the contracts to meet the Australian Forestry Standard provisions for sustainable yield.
6. LITERATURE CITED

AFPA (2012). Letter from Mr. D. Pollard, AFPA, to Mr. Ross Garsden, NSCI, dated 27 April, 012, 7 pp.

Forestry Tasmania (2011b). *Evaluation of Wood Resource Scenarios relevant to*

APPENDIX A

Subject: Complaint concerning “unsustainable harvesting” by Forestry Tasmania - certificate No.14847 certified under the Australian Forestry Standard, (PEFC endorsed).

Dear Mr Berry,

The PEFC Council hereby submits an official complaint and request for investigation into the assertions made in the Report of the Chairman of the Independent Verification Group of the Tasmanian Forests Intergovernmental Agreement concerning unsustainable harvesting yields carried out in the forestry holdings of Forestry Tasmania.

A claim of unsustainable harvesting is a serious matter and requires urgent investigation concerning potential non-compliances with the requirements set out by the PEFC-endorsed Australian Forestry Standard. The PEFC Council is aware that you have already received a complaint on this subject, which reiterates the seriousness of this matter.

I look forward to the results of your investigation, which PEFC intends to make publicly available.

Please do not hesitate to contact me should you require further information.

Yours Sincerely

Dr. Michael Berger
Head of Technical Unit, PEFC Council

Cc:
Ben Gunneberg, Secretary General, PEFC Council
Richard Stanton, National Secretary, Australian Forestry Standard Limited/PEFC Australia
Robert Gordon, Managing Director, Forestry Tasmania